R
↳Dependency Pair Analysis
+'(X, s(Y)) -> +'(X, Y)
F(0, s(0), X) -> F(X, +(X, X), X)
F(0, s(0), X) -> +'(X, X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Remaining
+'(X, s(Y)) -> +'(X, Y)
+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y
+'(X, s(Y)) -> +'(X, Y)
+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y
POL(0) = 0 POL(g(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(f(x1, x2, x3)) = 0 POL(+'(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Remaining
+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
F(0, s(0), X) -> F(X, +(X, X), X)
+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y