Term Rewriting System R:
[X, Z, Y]
h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

H(X, Z) -> F(X, s(X), Z)
F(X, Y, g(X, Y)) -> H(0, g(X, Y))
G(X, s(Y)) -> G(X, Y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

G(X, s(Y)) -> G(X, Y)


Rules:


h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)





The following dependency pair can be strictly oriented:

G(X, s(Y)) -> G(X, Y)


The following rules can be oriented:

h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{h, f} > 0
g > 0
G > 0
s > 0

resulting in one new DP problem.
Used Argument Filtering System:
G(x1, x2) -> G(x1, x2)
s(x1) -> s(x1)
h(x1, x2) -> h(x1, x2)
f(x1, x2, x3) -> f(x1, x3)
g(x1, x2) -> g(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(X, Y, g(X, Y)) -> H(0, g(X, Y))
H(X, Z) -> F(X, s(X), Z)


Rules:


h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)




Termination of R could not be shown.
Duration:
0:01 minutes