Term Rewriting System R:
[x]
h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

H(f(f(x))) -> H(f(g(f(x))))
H(f(f(x))) -> F(g(f(x)))
F(g(f(x))) -> F(f(x))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pair:

F(g(f(x))) -> F(f(x))


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))





The following dependency pair can be strictly oriented:

F(g(f(x))) -> F(f(x))


Additionally, the following usable rule w.r.t. to the implicit AFS can be oriented:

f(g(f(x))) -> f(f(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1  
  POL(f(x1))=  0  
  POL(F(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

H(f(f(x))) -> H(f(g(f(x))))


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

H(f(f(x))) -> H(f(g(f(x))))
two new Dependency Pairs are created:

H(f(f(x''))) -> H(f(f(x'')))
H(f(f(g(f(x''))))) -> H(f(g(f(f(x'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

H(f(f(g(f(x''))))) -> H(f(g(f(f(x'')))))
H(f(f(x''))) -> H(f(f(x'')))


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))




Termination of R could not be shown.
Duration:
0:00 minutes