Term Rewriting System R:
[x]
h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

H(f(f(x))) -> H(f(g(f(x))))
H(f(f(x))) -> F(g(f(x)))
F(g(f(x))) -> F(f(x))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

F(g(f(x))) -> F(f(x))


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))





The following dependency pair can be strictly oriented:

F(g(f(x))) -> F(f(x))


The following rules can be oriented:

f(g(f(x))) -> f(f(x))
h(f(f(x))) -> h(f(g(f(x))))


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
h(x1) -> h


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

H(f(f(x))) -> H(f(g(f(x))))


Rules:


h(f(f(x))) -> h(f(g(f(x))))
f(g(f(x))) -> f(f(x))




Termination of R could not be shown.
Duration:
0:00 minutes