R
↳Dependency Pair Analysis
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
FROM(X) -> FROM(s(X))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
FIRST(s(s(X'')), cons(Y, Z')) -> FIRST(s(X''), Z')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Inst
FIRST(s(s(X'')), cons(Y, Z')) -> FIRST(s(X''), Z')
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FIRST(s(s(X'')), cons(Y, Z')) -> FIRST(s(X''), Z')
FIRST(s(s(s(X''''))), cons(Y, Z'')) -> FIRST(s(s(X'''')), Z'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Inst
FIRST(s(s(s(X''''))), cons(Y, Z'')) -> FIRST(s(s(X'''')), Z'')
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
FIRST(s(s(s(X''''))), cons(Y, Z'')) -> FIRST(s(s(X'''')), Z'')
POL(cons(x1, x2)) = 1 + x2 POL(FIRST(x1, x2)) = x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Inst
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Instantiation Transformation
FROM(X) -> FROM(s(X))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 6
↳Instantiation Transformation
FROM(s(X'')) -> FROM(s(s(X'')))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(X'')) -> FROM(s(s(X'')))
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 7
↳Instantiation Transformation
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 8
↳Instantiation Transformation
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 9
↳Instantiation Transformation
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Inst
→DP Problem 6
↳Inst
...
→DP Problem 10
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
from(X) -> cons(X, from(s(X)))