Term Rewriting System R:
[X, Y, Z]
f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(X) -> F(g(X))
F(X) -> G(X)
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)

Furthermore, R contains three SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules


Dependency Pair:

G(s(X)) -> G(X)


Rules:


f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 4
Size-Change Principle
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules


Dependency Pair:

G(s(X)) -> G(X)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. G(s(X)) -> G(X)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Usable Rules (Innermost)
           →DP Problem 3
UsableRules


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, Z)


Rules:


f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
             ...
               →DP Problem 5
Size-Change Principle
           →DP Problem 3
UsableRules


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, Z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
           →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

F(X) -> F(g(X))


Rules:


f(X) -> cons(X, f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules
             ...
               →DP Problem 6
Non Termination


Dependency Pair:

F(X) -> F(g(X))


Rules:


g(s(X)) -> s(s(g(X)))
g(0) -> s(0)


Strategy:

innermost




Found an infinite P-chain over R:
P =

F(X) -> F(g(X))

R =

g(s(X)) -> s(s(g(X)))
g(0) -> s(0)

s = F(X)
evaluates to t =F(g(X))

Thus, s starts an infinite chain as s matches t.

Non-Termination of R could be shown.
Duration:
0:01 minutes