R
↳Dependency Pair Analysis
MINUS(s(X), s(Y)) -> MINUS(X, Y)
GEQ(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> IF(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
DIV(s(X), s(Y)) -> GEQ(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
GEQ(s(X), s(Y)) -> GEQ(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
GEQ(s(X), s(Y)) -> GEQ(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
GEQ(s(X), s(Y)) -> GEQ(X, Y)
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(0, Y) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
geq(X, 0) -> true
geq(0, s(Y)) -> false
geq(s(X), s(Y)) -> geq(X, Y)
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) -> X
if(false, X, Y) -> Y