Term Rewriting System R:
[YS, X, XS, Y, L]
app(nil, YS) -> YS
app(cons(X, XS), YS) -> cons(X, app(XS, YS))
from(X) -> cons(X, from(s(X)))
zWadr(nil, YS) -> nil
zWadr(XS, nil) -> nil
zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) -> cons(nil, zWadr(L, prefix(L)))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(cons(X, XS), YS) -> APP(XS, YS)
FROM(X) -> FROM(s(X))
ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, nil))
ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS)
PREFIX(L) -> ZWADR(L, prefix(L))
PREFIX(L) -> PREFIX(L)

Furthermore, R contains four SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
UsableRules


Dependency Pair:

APP(cons(X, XS), YS) -> APP(XS, YS)


Rules:


app(nil, YS) -> YS
app(cons(X, XS), YS) -> cons(X, app(XS, YS))
from(X) -> cons(X, from(s(X)))
zWadr(nil, YS) -> nil
zWadr(XS, nil) -> nil
zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) -> cons(nil, zWadr(L, prefix(L)))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 5
Size-Change Principle
           →DP Problem 2
UsableRules


Dependency Pair:

APP(cons(X, XS), YS) -> APP(XS, YS)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. APP(cons(X, XS), YS) -> APP(XS, YS)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Usable Rules (Innermost)


Dependency Pair:

FROM(X) -> FROM(s(X))


Rules:


app(nil, YS) -> YS
app(cons(X, XS), YS) -> cons(X, app(XS, YS))
from(X) -> cons(X, from(s(X)))
zWadr(nil, YS) -> nil
zWadr(XS, nil) -> nil
zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS))
prefix(L) -> cons(nil, zWadr(L, prefix(L)))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
             ...
               →DP Problem 6
Non Termination


Dependency Pair:

FROM(X) -> FROM(s(X))


Rule:

none


Strategy:

innermost




Found an infinite P-chain over R:
P =

FROM(X) -> FROM(s(X))

R = none

s = FROM(X)
evaluates to t =FROM(s(X))

Thus, s starts an infinite chain as s matches t.

Non-Termination of R could be shown.
Duration:
0:02 minutes