R
↳Dependency Pair Analysis
DBL(s(X)) -> DBL(X)
DBLS(cons(X, Y)) -> DBL(X)
DBLS(cons(X, Y)) -> DBLS(Y)
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
INDX(cons(X, Y), Z) -> SEL(X, Z)
INDX(cons(X, Y), Z) -> INDX(Y, Z)
FROM(X) -> FROM(s(X))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
DBL(s(X)) -> DBL(X)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
DBL(s(X)) -> DBL(X)
POL(s(x1)) = 1 + x1 POL(DBL(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
SEL(s(X), cons(Y, Z)) -> SEL(X, Z)
POL(SEL(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Instantiation Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(X) -> FROM(s(X))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 8
↳Instantiation Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(s(X'')) -> FROM(s(s(X'')))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(X'')) -> FROM(s(s(X'')))
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 9
↳Instantiation Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(X''''))) -> FROM(s(s(s(X''''))))
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 10
↳Instantiation Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(s(X'''''')))) -> FROM(s(s(s(s(X'''''')))))
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 8
↳Inst
...
→DP Problem 11
↳Instantiation Transformation
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
one new Dependency Pair is created:
FROM(s(s(s(s(X''''''''))))) -> FROM(s(s(s(s(s(X''''''''))))))
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
DBLS(cons(X, Y)) -> DBLS(Y)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
INDX(cons(X, Y), Z) -> INDX(Y, Z)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
DBLS(cons(X, Y)) -> DBLS(Y)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
INDX(cons(X, Y), Z) -> INDX(Y, Z)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Inst
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
FROM(s(s(s(s(s(X'''''''''')))))) -> FROM(s(s(s(s(s(s(X'''''''''')))))))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
DBLS(cons(X, Y)) -> DBLS(Y)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))
INDX(cons(X, Y), Z) -> INDX(Y, Z)
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
dbls(nil) -> nil
dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, Z)
indx(nil, X) -> nil
indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
from(X) -> cons(X, from(s(X)))