Term Rewriting System R:
[Z, X, Y]
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z))
from(X) -> cons(X, from(s(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
len(nil) -> 0
len(cons(X, Z)) -> s(len(Z))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

FST(s(X), cons(Y, Z)) -> FST(X, Z)
FROM(X) -> FROM(s(X))
ADD(s(X), Y) -> ADD(X, Y)
LEN(cons(X, Z)) -> LEN(Z)

Furthermore, R contains four SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
UsableRules


Dependency Pair:

FST(s(X), cons(Y, Z)) -> FST(X, Z)


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z))
from(X) -> cons(X, from(s(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
len(nil) -> 0
len(cons(X, Z)) -> s(len(Z))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 5
Size-Change Principle
           →DP Problem 2
UsableRules


Dependency Pair:

FST(s(X), cons(Y, Z)) -> FST(X, Z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. FST(s(X), cons(Y, Z)) -> FST(X, Z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Usable Rules (Innermost)


Dependency Pair:

FROM(X) -> FROM(s(X))


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z))
from(X) -> cons(X, from(s(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
len(nil) -> 0
len(cons(X, Z)) -> s(len(Z))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
             ...
               →DP Problem 6
Non Termination


Dependency Pair:

FROM(X) -> FROM(s(X))


Rule:

none


Strategy:

innermost




Found an infinite P-chain over R:
P =

FROM(X) -> FROM(s(X))

R = none

s = FROM(X)
evaluates to t =FROM(s(X))

Thus, s starts an infinite chain as s matches t.

Non-Termination of R could be shown.
Duration:
0:02 minutes