R
↳Dependency Pair Analysis
FROM(X) -> FROM(s(X))
LENGTH(cons(X, Y)) -> LENGTH1(Y)
LENGTH1(X) -> LENGTH(X)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳Remaining
FROM(X) -> FROM(s(X))
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)
one new Dependency Pair is created:
FROM(X) -> FROM(s(X))
FROM(s(X'')) -> FROM(s(s(X'')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)
LENGTH1(X) -> LENGTH(X)
LENGTH(cons(X, Y)) -> LENGTH1(Y)
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Remaining Obligation(s)
FROM(s(X'')) -> FROM(s(s(X'')))
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)
LENGTH1(X) -> LENGTH(X)
LENGTH(cons(X, Y)) -> LENGTH1(Y)
from(X) -> cons(X, from(s(X)))
length(nil) -> 0
length(cons(X, Y)) -> s(length1(Y))
length1(X) -> length(X)