Term Rewriting System R:
[x, y]
f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(c(s(x), y)) -> F(c(x, s(y)))
G(c(x, s(y))) -> G(c(s(x), y))
G(s(f(x))) -> G(f(x))

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

F(c(s(x), y)) -> F(c(x, s(y)))

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

The following dependency pair can be strictly oriented:

F(c(s(x), y)) -> F(c(x, s(y)))

The following rules can be oriented:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(g) =  0 POL(s(x1)) =  1 + x1 POL(F(x1)) =  x1 POL(f(x1)) =  x1

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
c(x1, x2) -> x1
s(x1) -> s(x1)
f(x1) -> f(x1)
g(x1) -> g

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

G(c(x, s(y))) -> G(c(s(x), y))

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

The following dependency pair can be strictly oriented:

G(c(x, s(y))) -> G(c(s(x), y))

The following rules can be oriented:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(g(x1)) =  x1 POL(G(x1)) =  1 + x1 POL(s(x1)) =  1 + x1 POL(f) =  0

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
c(x1, x2) -> x2
s(x1) -> s(x1)
f(x1) -> f
g(x1) -> g(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

G(s(f(x))) -> G(f(x))

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

The following dependency pair can be strictly oriented:

G(s(f(x))) -> G(f(x))

The following rules can be oriented:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(c(x1, x2)) =  1 + x1 + x2 POL(g(x1)) =  1 + x1 POL(G(x1)) =  1 + x1 POL(s(x1)) =  1 + x1 POL(f(x1)) =  x1

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
c(x1, x2) -> c(x1, x2)
g(x1) -> g(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`
`           →DP Problem 6`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

f(c(s(x), y)) -> f(c(x, s(y)))
g(c(x, s(y))) -> g(c(s(x), y))
g(s(f(x))) -> g(f(x))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes