Term Rewriting System R:
[n, x, m, y]
sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) -> SUM(x, y)
WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
WEIGHT(cons(n, cons(m, x))) -> SUM(cons(n, cons(m, x)), cons(0, x))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pairs:

SUM(cons(0, x), y) -> SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))


Rules:


sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n





The following dependency pair can be strictly oriented:

SUM(cons(0, x), y) -> SUM(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1, x2) -> SUM(x1, x2)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))


Rules:


sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n





The following dependency pair can be strictly oriented:

SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y))


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1, x2) -> x1
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
AFS
             ...
               →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))


Rules:


sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n





The following dependency pair can be strictly oriented:

WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))


The following usable rules using the Ce-refinement can be oriented:

sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
WEIGHT(x1) -> WEIGHT(x1)
cons(x1, x2) -> cons(x2)
sum(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph


Dependency Pair:


Rules:


sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) -> sum(x, y)
sum(nil, y) -> y
weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) -> n





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes