Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, x, y) -> MOD(minus(x, y), y)
IFMOD(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)





The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)


The following rules can be oriented:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{true, 0}
{mod, ifmod}
{false, s}

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
le(x1, x2) -> le(x1, x2)
minus(x1, x2) -> x1
mod(x1, x2) -> mod(x1, x2)
ifmod(x1, x2, x3) -> ifmod(x2, x3)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)





The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


The following rules can be oriented:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
MINUS > true
0 > true
minus > true
{mod, ifmod} > true
s > true
le > false > true

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
le(x1, x2) -> le(x1, x2)
minus(x1, x2) -> x1
mod(x1, x2) -> mod(x1, x2)
ifmod(x1, x2, x3) -> ifmod(x2, x3)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IFMOD(true, x, y) -> MOD(minus(x, y), y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)




Termination of R could not be shown.
Duration:
0:04 minutes