Term Rewriting System R:
[x, y]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))
QUOT(x, s(y)) -> LE(s(y), x)
IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
IFQUOT(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Inst


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0





The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 4
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Inst


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Inst


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0





The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(LE(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Inst


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Instantiation Transformation


Dependency Pairs:

IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
one new Dependency Pair is created:

IFQUOT(true, x', s(y'')) -> QUOT(minus(x', s(y'')), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Inst
           →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IFQUOT(true, x', s(y'')) -> QUOT(minus(x', s(y'')), s(y''))
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0




Termination of R could not be shown.
Duration:
0:00 minutes