Term Rewriting System R:
[x, y]
even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EVEN(s(s(x))) -> EVEN(x)
HALF(s(s(x))) -> HALF(x)
PLUS(s(x), y) -> PLUS(x, y)
TIMES(s(x), y) -> IFTIMES(even(s(x)), s(x), y)
TIMES(s(x), y) -> EVEN(s(x))
IFTIMES(true, s(x), y) -> PLUS(times(half(s(x)), y), times(half(s(x)), y))
IFTIMES(true, s(x), y) -> TIMES(half(s(x)), y)
IFTIMES(true, s(x), y) -> HALF(s(x))
IFTIMES(false, s(x), y) -> PLUS(y, times(x, y))
IFTIMES(false, s(x), y) -> TIMES(x, y)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:00 minutes