Term Rewriting System R:
[x, y]
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(x, s(y)) -> IF(le(x, s(y)), 0, p(minus(x, p(s(y)))))
MINUS(x, s(y)) -> LE(x, s(y))
MINUS(x, s(y)) -> P(minus(x, p(s(y))))
MINUS(x, s(y)) -> MINUS(x, p(s(y)))
MINUS(x, s(y)) -> P(s(y))

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳Remaining`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Remaining`

Dependency Pair:

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, p(s(y)))

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Termination of R could not be shown.
Duration:
0:00 minutes