Term Rewriting System R:
[y, z, x]
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) -> PLUS(z, s(0))
PLUS(s(x), y) -> PLUS(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

The following dependency pair can be strictly oriented:

PLUS(s(x), y) -> PLUS(x, y)

There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PLUS(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

Rules:

quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`

Dependency Pairs:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)

Rules:

quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

The following dependency pair can be strictly oriented:

QUOT(s(x), s(y), z) -> QUOT(x, y, z)

Additionally, the following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(plus(x1, x2)) =  x1 + x2 POL(QUOT(x1, x2, x3)) =  x1 POL(0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Polynomial Ordering`

Dependency Pair:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))

Rules:

quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

The following dependency pair can be strictly oriented:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))

Additionally, the following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(plus(x1, x2)) =  x2 POL(QUOT(x1, x2, x3)) =  x1 + x2 POL(0) =  1 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Polo`
`             ...`
`               →DP Problem 5`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes