Term Rewriting System R:
[y, z, x]
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) -> PLUS(z, s(0))
PLUS(s(x), y) -> PLUS(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)


Rules:


quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))





The following dependency pair can be strictly oriented:

PLUS(s(x), y) -> PLUS(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)


Rules:


quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))





The following dependency pair can be strictly oriented:

QUOT(s(x), s(y), z) -> QUOT(x, y, z)


The following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
plus > s

resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2, x3) -> x1
s(x1) -> s(x1)
plus(x1, x2) -> plus(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Argument Filtering and Ordering


Dependency Pair:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))


Rules:


quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))





The following dependency pair can be strictly oriented:

QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))


The following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
0 > s
plus > s
QUOT > s

resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2, x3) -> QUOT(x1, x2, x3)
s(x1) -> s
plus(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
AFS
             ...
               →DP Problem 5
Dependency Graph


Dependency Pair:


Rules:


quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes