R
↳Dependency Pair Analysis
F(s(x)) -> F(x)
G(s(0)) -> G(f(s(0)))
G(s(0)) -> F(s(0))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
F(s(x)) -> F(x)
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
one new Dependency Pair is created:
F(s(x)) -> F(x)
F(s(s(x''))) -> F(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
F(s(s(x''))) -> F(s(x''))
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
one new Dependency Pair is created:
F(s(s(x''))) -> F(s(x''))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
F(s(s(s(x'''')))) -> F(s(s(x'''')))
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
POL(s(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
G(s(0)) -> G(f(s(0)))
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
one new Dependency Pair is created:
G(s(0)) -> G(f(s(0)))
G(s(0)) -> G(f(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
G(s(0)) -> G(f(0))
f(f(x)) -> f(x)
f(s(x)) -> f(x)
g(s(0)) -> g(f(s(0)))
no new Dependency Pairs are created.
G(s(0)) -> G(f(0))