R
↳Dependency Pair Analysis
F(s(0), g(x)) -> F(x, g(x))
G(s(x)) -> G(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
G(s(x)) -> G(x)
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)
one new Dependency Pair is created:
G(s(x)) -> G(x)
G(s(s(x''))) -> G(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
G(s(s(x''))) -> G(s(x''))
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)
one new Dependency Pair is created:
G(s(s(x''))) -> G(s(x''))
G(s(s(s(x'''')))) -> G(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
G(s(s(s(x'''')))) -> G(s(s(x'''')))
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)
G(s(s(s(x'''')))) -> G(s(s(x'''')))
POL(G(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(s(0), g(x)) -> F(x, g(x))
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)
one new Dependency Pair is created:
F(s(0), g(x)) -> F(x, g(x))
F(s(0), g(s(0))) -> F(s(0), g(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Remaining Obligation(s)
F(s(0), g(s(0))) -> F(s(0), g(s(0)))
f(s(0), g(x)) -> f(x, g(x))
g(s(x)) -> g(x)