R
↳Dependency Pair Analysis
F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
F(0, 1, g(x, y), z) -> H(x)
H(g(x, y)) -> H(x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Remaining
H(g(x, y)) -> H(x)
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
H(g(x, y)) -> H(x)
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
POL(0) = 0 POL(g(x1, x2)) = 1 + x1 POL(1) = 0 POL(h(x1)) = 0 POL(H(x1)) = x1 POL(f(x1, x2, x3, x4)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Remaining
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)