R
↳Dependency Pair Analysis
F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
F(0, 1, g(x, y), z) -> H(x)
H(g(x, y)) -> H(x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Remaining
H(g(x, y)) -> H(x)
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
H(g(x, y)) -> H(x)
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
trivial
H(x1) -> H(x1)
g(x1, x2) -> g(x1, x2)
f(x1, x2, x3, x4) -> x3
h(x1) -> h(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Remaining
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Remaining Obligation(s)
F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)