Term Rewriting System R:
[x]
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(f, app(g, x)) -> APP(g, app(g, app(f, x)))
APP(f, app(g, x)) -> APP(g, app(f, x))
APP(f, app(g, x)) -> APP(f, x)
APP(f, app(g, x)) -> APP(g, app(g, app(g, x)))
APP(f, app(g, x)) -> APP(g, app(g, x))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pair:

APP(f, app(g, x)) -> APP(f, x)


Rules:


app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))





The following dependency pair can be strictly oriented:

APP(f, app(g, x)) -> APP(f, x)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
app(x1, x2) -> app(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes