Term Rewriting System R:
[x, y, z]
app(app(app(f, 0), 1), x) -> app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) -> app(s, app(app(app(f, 0), 1), z))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
APP(app(app(f, 0), 1), x) -> APP(app(f, app(s, x)), x)
APP(app(app(f, 0), 1), x) -> APP(f, app(s, x))
APP(app(app(f, 0), 1), x) -> APP(s, x)
APP(app(app(f, x), y), app(s, z)) -> APP(s, app(app(app(f, 0), 1), z))
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, x), y), app(s, z)) -> APP(app(f, 0), 1)
APP(app(app(f, x), y), app(s, z)) -> APP(f, 0)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
Rules:
app(app(app(f, 0), 1), x) -> app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) -> app(s, app(app(app(f, 0), 1), z))
The original DP problem is in applicative form. Its DPs and usable rules are the following.
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
none
It is proper and hence, it can be A-transformed which results in the DP problem
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, x) -> F(s(x), x, x)
none
We number the DPs as follows:
- F(x, y, s(z)) -> F(0, 1, z)
- F(0, 1, x) -> F(s(x), x, x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes