R
↳Dependency Pair Analysis
A(lambda(x), y) -> LAMBDA(a(x, 1))
A(lambda(x), y) -> A(x, 1)
A(lambda(x), y) -> LAMBDA(a(x, a(y, t)))
A(lambda(x), y) -> A(x, a(y, t))
A(lambda(x), y) -> A(y, t)
A(a(x, y), z) -> A(x, a(y, z))
A(a(x, y), z) -> A(y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
A(a(x, y), z) -> A(y, z)
A(a(x, y), z) -> A(x, a(y, z))
A(lambda(x), y) -> A(y, t)
A(lambda(x), y) -> A(x, a(y, t))
A(lambda(x), y) -> A(x, 1)
a(lambda(x), y) -> lambda(a(x, 1))
a(lambda(x), y) -> lambda(a(x, a(y, t)))
a(a(x, y), z) -> a(x, a(y, z))
a(x, y) -> x
a(x, y) -> y
lambda(x) -> x
A(lambda(x), y) -> A(y, t)
A(lambda(x), y) -> A(x, a(y, t))
A(lambda(x), y) -> A(x, 1)
a(lambda(x), y) -> lambda(a(x, 1))
a(lambda(x), y) -> lambda(a(x, a(y, t)))
a(a(x, y), z) -> a(x, a(y, z))
a(x, y) -> x
a(x, y) -> y
lambda(x) -> x
POL(t) = 0 POL(1) = 0 POL(lambda(x1)) = 1 + x1 POL(a(x1, x2)) = x1 + x2 POL(A(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
A(a(x, y), z) -> A(y, z)
A(a(x, y), z) -> A(x, a(y, z))
a(lambda(x), y) -> lambda(a(x, 1))
a(lambda(x), y) -> lambda(a(x, a(y, t)))
a(a(x, y), z) -> a(x, a(y, z))
a(x, y) -> x
a(x, y) -> y
lambda(x) -> x