Term Rewriting System R:
[x, y, z]
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(0, 1, x) -> F(g(x), g(x), x)
F(g(x), y, z) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(x, y, g(z)) -> F(x, y, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

F(x, y, g(z)) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)


Rules:


f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))





The following dependency pair can be strictly oriented:

F(x, y, g(z)) -> F(x, y, z)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(g(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2, x3) -> x3
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)


Rules:


f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))




Termination of R could not be shown.
Duration:
0:00 minutes