R
↳Dependency Pair Analysis
F(0, 1, x) -> F(g(x), g(x), x)
F(g(x), y, z) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(x, y, g(z)) -> F(x, y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
F(x, y, g(z)) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))
F(x, y, g(z)) -> F(x, y, z)
POL(0) = 0 POL(g(x1)) = 1 + x1 POL(1) = 0 POL(F(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))