R
↳Dependency Pair Analysis
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
A(a(f(x, y))) -> A(b(a(b(a(x)))))
A(a(f(x, y))) -> A(b(a(x)))
A(a(f(x, y))) -> A(x)
A(a(f(x, y))) -> A(b(a(b(a(y)))))
A(a(f(x, y))) -> A(b(a(y)))
A(a(f(x, y))) -> A(y)
F(a(x), a(y)) -> A(f(x, y))
F(a(x), a(y)) -> F(x, y)
F(b(x), b(y)) -> F(x, y)
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
F(b(x), b(y)) -> F(x, y)
F(a(x), a(y)) -> F(x, y)
A(a(f(x, y))) -> A(y)
A(a(f(x, y))) -> A(x)
F(a(x), a(y)) -> A(f(x, y))
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
POL(b(x1)) = x1 POL(a(x1)) = x1 POL(F(x1, x2)) = 1 + x1 + x2 POL(A(x1)) = x1 POL(f(x1, x2)) = 1 + x1 + x2
A(a(f(x, y))) -> A(y)
A(a(f(x, y))) -> A(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Narrowing Transformation
F(b(x), b(y)) -> F(x, y)
F(a(x), a(y)) -> F(x, y)
F(a(x), a(y)) -> A(f(x, y))
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))
two new Dependency Pairs are created:
F(a(x), a(y)) -> A(f(x, y))
F(a(a(x'')), a(a(y''))) -> A(a(f(x'', y'')))
F(a(b(x'')), a(b(y''))) -> A(b(f(x'', y'')))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Semantic Labelling
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
F(a(a(x'')), a(a(y''))) -> A(a(f(x'', y'')))
F(a(x), a(y)) -> F(x, y)
F(b(x), b(y)) -> F(x, y)
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))
a(x0) = 0 f(x0, x1) = x1 b(x0) = 1 + x0 F(x0, x1) = 0 A(x0) = x0
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Modular Removal of Rules
F00(b1(x), b1(y)) -> F11(x, y)
F00(a0(x), a0(y)) -> F00(x, y)
F00(a0(a1(x'')), a0(a1(y''))) -> A0(a1(f11(x'', y'')))
F00(a0(a1(x'')), a0(a0(y''))) -> A0(a0(f10(x'', y'')))
F00(a0(a0(x'')), a0(a1(y''))) -> A0(a1(f01(x'', y'')))
A0(a1(f11(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
A0(a0(f10(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
A0(a1(f01(x, y))) -> F00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
F00(a0(a0(x'')), a0(a0(y''))) -> A0(a0(f00(x'', y'')))
F11(b0(x), b0(y)) -> F00(x, y)
F00(a1(x), a1(y)) -> F11(x, y)
A0(a0(f00(x, y))) -> F00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f00(b1(x), b1(y)) -> b1(f11(x, y))
f01(b1(x), b0(y)) -> b0(f10(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
f11(b0(x), b0(y)) -> b0(f00(x, y))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f11(b0(x), b0(y)) -> b0(f00(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f01(b1(x), b0(y)) -> b0(f10(x, y))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
f00(b1(x), b1(y)) -> b1(f11(x, y))
POL(A_0(x1)) = x1 POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = x1 + x2 POL(a_1(x1)) = x1 POL(f_00(x1, x2)) = x1 + x2 POL(b_0(x1)) = x1 POL(a_0(x1)) = x1 POL(F_11(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(b_1(x1)) = 1 + x1
F00(b1(x), b1(y)) -> F11(x, y)
f01(b1(x), b0(y)) -> b0(f10(x, y))
f00(b1(x), b1(y)) -> b1(f11(x, y))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Modular Removal of Rules
F00(a0(a1(x'')), a0(a1(y''))) -> A0(a1(f11(x'', y'')))
A0(a1(f11(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
A0(a0(f10(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
F00(a0(a1(x'')), a0(a0(y''))) -> A0(a0(f10(x'', y'')))
A0(a1(f01(x, y))) -> F00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
F00(a0(a0(x'')), a0(a1(y''))) -> A0(a1(f01(x'', y'')))
F11(b0(x), b0(y)) -> F00(x, y)
F00(a1(x), a1(y)) -> F11(x, y)
A0(a0(f00(x, y))) -> F00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
F00(a0(a0(x'')), a0(a0(y''))) -> A0(a0(f00(x'', y'')))
F00(a0(x), a0(y)) -> F00(x, y)
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
f11(b0(x), b0(y)) -> b0(f00(x, y))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f11(b0(x), b0(y)) -> b0(f00(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
POL(A_0(x1)) = 1 + x1 POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = x1 + x2 POL(a_1(x1)) = x1 POL(f_00(x1, x2)) = x1 + x2 POL(b_0(x1)) = x1 POL(a_0(x1)) = 1 + x1 POL(f_10(x1, x2)) = x1 + x2 POL(F_11(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(b_1(x1)) = x1
F00(a0(a1(x'')), a0(a1(y''))) -> A0(a1(f11(x'', y'')))
A0(a1(f11(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
A0(a0(f10(x, y))) -> F00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
F00(a0(a1(x'')), a0(a0(y''))) -> A0(a0(f10(x'', y'')))
F00(a0(a0(x'')), a0(a1(y''))) -> A0(a1(f01(x'', y'')))
F00(a0(a0(x'')), a0(a0(y''))) -> A0(a0(f00(x'', y'')))
F00(a0(x), a0(y)) -> F00(x, y)
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Modular Removal of Rules
F11(b0(x), b0(y)) -> F00(x, y)
F00(a1(x), a1(y)) -> F11(x, y)
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
f11(b0(x), b0(y)) -> b0(f00(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
POL(F_00(x1, x2)) = x1 + x2 POL(a_1(x1)) = x1 POL(b_0(x1)) = x1 POL(F_11(x1, x2)) = x1 + x2
F11(b0(x), b0(y)) -> F00(x, y)
F00(a1(x), a1(y)) -> F11(x, y)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Modular Removal of Rules
F10(b0(x), b1(y)) -> F01(x, y)
F01(b1(x), b0(y)) -> F10(x, y)
a0(a0(f00(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f01(x, y))) -> f00(a1(b0(a1(b0(a0(x))))), a1(b0(a1(b0(a1(y))))))
a0(a0(f10(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a0(y))))))
a0(a1(f11(x, y))) -> f00(a1(b0(a1(b0(a1(x))))), a1(b0(a1(b0(a1(y))))))
f00(a0(x), a0(y)) -> a0(f00(x, y))
f00(a0(x), a1(y)) -> a1(f01(x, y))
f00(a1(x), a0(y)) -> a0(f10(x, y))
f00(a1(x), a1(y)) -> a1(f11(x, y))
f00(b1(x), b1(y)) -> b1(f11(x, y))
f01(b1(x), b0(y)) -> b0(f10(x, y))
f10(b0(x), b1(y)) -> b1(f01(x, y))
f11(b0(x), b0(y)) -> b0(f00(x, y))
POL(b_0(x1)) = x1 POL(F_01(x1, x2)) = x1 + x2 POL(F_10(x1, x2)) = x1 + x2 POL(b_1(x1)) = x1
F10(b0(x), b1(y)) -> F01(x, y)
F01(b1(x), b0(y)) -> F10(x, y)
Termination of R successfully shown.
Duration:
0:50 minutes