R
↳Dependency Pair Analysis
F(a, f(b, x)) -> F(b, f(a, x))
F(a, f(b, x)) -> F(a, x)
F(b, f(c, x)) -> F(c, f(b, x))
F(b, f(c, x)) -> F(b, x)
F(c, f(a, x)) -> F(a, f(c, x))
F(c, f(a, x)) -> F(c, x)
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
F(b, f(c, x)) -> F(b, x)
F(c, f(a, x)) -> F(c, x)
F(a, f(b, x)) -> F(a, x)
F(c, f(a, x)) -> F(a, f(c, x))
F(b, f(c, x)) -> F(c, f(b, x))
F(a, f(b, x)) -> F(b, f(a, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(b, f(c, x)) -> f(c, f(b, x))
f(c, f(a, x)) -> f(a, f(c, x))
F(b, f(c, x)) -> F(b, x)
F(c, f(a, x)) -> F(c, x)
F(a, f(b, x)) -> F(a, x)
F(c, f(a, x)) -> F(a, f(c, x))
F(b, f(c, x)) -> F(c, f(b, x))
F(a, f(b, x)) -> F(b, f(a, x))
f(c, f(a, x)) -> f(a, f(c, x))
f(b, f(c, x)) -> f(c, f(b, x))
f(a, f(b, x)) -> f(b, f(a, x))
B(c(x)) -> B(x)
C(a(x)) -> C(x)
A(b(x)) -> A(x)
C(a(x)) -> A(c(x))
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(A(x1)) = x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Modular Removal of Rules
B(c(x)) -> B(x)
C(a(x)) -> C(x)
A(b(x)) -> A(x)
C(a(x)) -> A(c(x))
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
c(a(x)) -> a(c(x))
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = 1 + x1 POL(b(x1)) = 1 + x1 POL(a(x1)) = x1 POL(A(x1)) = x1
A(b(x)) -> A(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Modular Removal of Rules
B(c(x)) -> B(x)
C(a(x)) -> C(x)
C(a(x)) -> A(c(x))
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
c(a(x)) -> a(c(x))
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
POL(c(x1)) = 1 + x1 POL(C(x1)) = 1 + x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(A(x1)) = x1
B(c(x)) -> B(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
...
→DP Problem 4
↳Modular Removal of Rules
C(a(x)) -> C(x)
C(a(x)) -> A(c(x))
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
c(a(x)) -> a(c(x))
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = 1 + x1 POL(A(x1)) = 1 + x1
C(a(x)) -> C(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
...
→DP Problem 5
↳Negative Polynomial Order
C(a(x)) -> A(c(x))
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
POL( C(x1) ) = 1
POL( A(x1) ) = 0
POL( B(x1) ) = x1
POL( a(x1) ) = 0
POL( c(x1) ) = 1
POL( b(x1) ) = x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳MRR
...
→DP Problem 6
↳Dependency Graph
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))