Term Rewriting System R:
[x]
f(a, f(a, x)) -> f(c, f(b, x))
f(b, f(b, x)) -> f(a, f(c, x))
f(c, f(c, x)) -> f(b, f(a, x))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(a, f(a, x)) -> F(c, f(b, x))
F(a, f(a, x)) -> F(b, x)
F(b, f(b, x)) -> F(a, f(c, x))
F(b, f(b, x)) -> F(c, x)
F(c, f(c, x)) -> F(b, f(a, x))
F(c, f(c, x)) -> F(a, x)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

F(c, f(c, x)) -> F(a, x)
F(b, f(b, x)) -> F(c, x)
F(a, f(a, x)) -> F(b, x)
F(b, f(b, x)) -> F(a, f(c, x))
F(c, f(c, x)) -> F(b, f(a, x))
F(a, f(a, x)) -> F(c, f(b, x))

Rules:

f(a, f(a, x)) -> f(c, f(b, x))
f(b, f(b, x)) -> f(a, f(c, x))
f(c, f(c, x)) -> f(b, f(a, x))

The following dependency pairs can be strictly oriented:

F(c, f(c, x)) -> F(a, x)
F(b, f(b, x)) -> F(c, x)
F(a, f(a, x)) -> F(b, x)

The following usable rules using the Ce-refinement can be oriented:

f(a, f(a, x)) -> f(c, f(b, x))
f(b, f(b, x)) -> f(a, f(c, x))
f(c, f(c, x)) -> f(b, f(a, x))

Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> x2
f(x1, x2) -> f(x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

F(b, f(b, x)) -> F(a, f(c, x))
F(c, f(c, x)) -> F(b, f(a, x))
F(a, f(a, x)) -> F(c, f(b, x))

Rules:

f(a, f(a, x)) -> f(c, f(b, x))
f(b, f(b, x)) -> f(a, f(c, x))
f(c, f(c, x)) -> f(b, f(a, x))

Termination of R could not be shown.
Duration:
0:00 minutes