R
↳Dependency Pair Analysis
F(a, f(f(a, x), a)) -> F(f(a, f(a, x)), a)
F(a, f(f(a, x), a)) -> F(a, f(a, x))
R
↳DPs
→DP Problem 1
↳Semantic Labelling
F(a, f(f(a, x), a)) -> F(a, f(a, x))
f(a, f(f(a, x), a)) -> f(f(a, f(a, x)), a)
f(x0, x1) = 0 a = 1 F(x0, x1) = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳Modular Removal of Rules
F10(a, f01(f10(a, x), a)) -> F10(a, f10(a, x))
f10(a, f01(f10(a, x), a)) -> f01(f10(a, f10(a, x)), a)
f10(a, f01(f11(a, x), a)) -> f01(f10(a, f11(a, x)), a)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f10(a, f01(f10(a, x), a)) -> f01(f10(a, f10(a, x)), a)
f10(a, f01(f11(a, x), a)) -> f01(f10(a, f11(a, x)), a)
POL(f_11(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = 1 + x1 + x2 POL(F_10(x1, x2)) = x1 + x2 POL(a) = 0
F10(a, f01(f10(a, x), a)) -> F10(a, f10(a, x))
Termination of R successfully shown.
Duration:
0:00 minutes