Term Rewriting System R:
[N, X, Y, Z, X1, X2]
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
TERMS(N) -> SQR(N)
SQR(s(X)) -> ADD(sqr(X), dbl(X))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
ADD(s(X), Y) -> ADD(X, Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
HALF(s(s(X))) -> HALF(X)
ACTIVATE(nterms(X)) -> TERMS(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
Furthermore, R contains five SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
Dependency Pair:
ADD(s(X), Y) -> ADD(X, Y)
Rules:
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
We number the DPs as follows:
- ADD(s(X), Y) -> ADD(X, Y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
Dependency Pair:
DBL(s(X)) -> DBL(X)
Rules:
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
We number the DPs as follows:
- DBL(s(X)) -> DBL(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
Dependency Pair:
HALF(s(s(X))) -> HALF(X)
Rules:
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
We number the DPs as follows:
- HALF(s(s(X))) -> HALF(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
Dependency Pair:
SQR(s(X)) -> SQR(X)
Rules:
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
We number the DPs as follows:
- SQR(s(X)) -> SQR(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
Dependency Pairs:
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
Rules:
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
We number the DPs as follows:
- ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
- FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
nfirst(x1, x2) -> nfirst(x1, x2)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes