R
↳Dependency Pair Analysis
TERMS(N) -> SQR(N)
SQR(s(X)) -> ADD(sqr(X), dbl(X))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
ADD(s(X), Y) -> ADD(X, Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
HALF(s(s(X))) -> HALF(X)
ACTIVATE(nterms(X)) -> TERMS(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
terms(N) -> cons(recip(sqr(N)), nterms(s(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
activate(nterms(X)) -> terms(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X