Term Rewriting System R:
[X, Y, X1, X2, X3]
active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(fact(X)) -> IF(zero(X), s(0), prod(X, fact(p(X))))
ACTIVE(fact(X)) -> ZERO(X)
ACTIVE(fact(X)) -> S(0)
ACTIVE(fact(X)) -> PROD(X, fact(p(X)))
ACTIVE(fact(X)) -> FACT(p(X))
ACTIVE(fact(X)) -> P(X)
ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(prod(s(X), Y)) -> ADD(Y, prod(X, Y))
ACTIVE(prod(s(X), Y)) -> PROD(X, Y)
ACTIVE(fact(X)) -> FACT(active(X))
ACTIVE(fact(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(zero(X)) -> ZERO(active(X))
ACTIVE(zero(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> PROD(active(X1), X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)
ACTIVE(prod(X1, X2)) -> PROD(X1, active(X2))
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(p(X)) -> P(active(X))
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(X1, active(X2))
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
FACT(mark(X)) -> FACT(X)
FACT(ok(X)) -> FACT(X)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
ZERO(mark(X)) -> ZERO(X)
ZERO(ok(X)) -> ZERO(X)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
PROD(mark(X1), X2) -> PROD(X1, X2)
PROD(X1, mark(X2)) -> PROD(X1, X2)
PROD(ok(X1), ok(X2)) -> PROD(X1, X2)
P(mark(X)) -> P(X)
P(ok(X)) -> P(X)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
PROPER(fact(X)) -> FACT(proper(X))
PROPER(fact(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(zero(X)) -> ZERO(proper(X))
PROPER(zero(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROD(proper(X1), proper(X2))
PROPER(prod(X1, X2)) -> PROPER(X1)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(p(X)) -> P(proper(X))
PROPER(p(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains 10 SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  0  
  POL(ok(x1))=  1 + x1  
  POL(IF(x1, x2, x3))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 11
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

IF(mark(X1), X2, X3) -> IF(X1, X2, X3)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

IF(mark(X1), X2, X3) -> IF(X1, X2, X3)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(IF(x1, x2, x3))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ZERO(ok(X)) -> ZERO(X)
ZERO(mark(X)) -> ZERO(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ZERO(ok(X)) -> ZERO(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ZERO(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

ZERO(mark(X)) -> ZERO(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ZERO(mark(X)) -> ZERO(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ZERO(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polo
             ...
               →DP Problem 14
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

PROD(ok(X1), ok(X2)) -> PROD(X1, X2)
PROD(X1, mark(X2)) -> PROD(X1, X2)
PROD(mark(X1), X2) -> PROD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROD(ok(X1), ok(X2)) -> PROD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(PROD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 15
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

PROD(X1, mark(X2)) -> PROD(X1, X2)
PROD(mark(X1), X2) -> PROD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROD(mark(X1), X2) -> PROD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(PROD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 16
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

PROD(X1, mark(X2)) -> PROD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROD(X1, mark(X2)) -> PROD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(PROD(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

FACT(ok(X)) -> FACT(X)
FACT(mark(X)) -> FACT(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

FACT(ok(X)) -> FACT(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FACT(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 18
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

FACT(mark(X)) -> FACT(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

FACT(mark(X)) -> FACT(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FACT(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 18
Polo
             ...
               →DP Problem 19
Dependency Graph
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

P(ok(X)) -> P(X)
P(mark(X)) -> P(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

P(ok(X)) -> P(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(P(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

P(mark(X)) -> P(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

P(mark(X)) -> P(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(P(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Dependency Graph
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 22
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

S(mark(X)) -> S(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(mark(X)) -> S(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 22
Polo
             ...
               →DP Problem 23
Dependency Graph
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 24
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ADD(mark(X1), X2) -> ADD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 25
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

ADD(X1, mark(X2)) -> ADD(X1, X2)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ADD(X1, mark(X2)) -> ADD(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 26
Dependency Graph
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(zero(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(fact(X)) -> ACTIVE(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(s(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(if(x1, x2, x3))=  x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(fact(x1))=  x1  
  POL(s(x1))=  1 + x1  
  POL(p(x1))=  x1  
  POL(zero(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)
ACTIVE(zero(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(fact(X)) -> ACTIVE(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(zero(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(if(x1, x2, x3))=  x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(fact(x1))=  x1  
  POL(p(x1))=  x1  
  POL(zero(x1))=  1 + x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 28
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(fact(X)) -> ACTIVE(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(if(x1, x2, x3))=  1 + x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(fact(x1))=  x1  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 29
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)
ACTIVE(fact(X)) -> ACTIVE(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(fact(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(fact(x1))=  1 + x1  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 30
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 31
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(p(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(prod(x1, x2))=  x1 + x2  
  POL(p(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 32
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ACTIVE(prod(X1, X2)) -> ACTIVE(X2)
ACTIVE(prod(X1, X2)) -> ACTIVE(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(prod(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 33
Dependency Graph
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(zero(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(fact(X)) -> PROPER(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(fact(x1))=  x1  
  POL(s(x1))=  1 + x1  
  POL(p(x1))=  x1  
  POL(zero(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)
PROPER(zero(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(fact(X)) -> PROPER(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(zero(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(fact(x1))=  x1  
  POL(p(x1))=  x1  
  POL(zero(x1))=  1 + x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 35
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(fact(X)) -> PROPER(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(if(x1, x2, x3))=  1 + x1 + x2 + x3  
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(fact(x1))=  x1  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 36
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)
PROPER(fact(X)) -> PROPER(X)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(fact(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(fact(x1))=  1 + x1  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 37
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(p(x1))=  x1  
  POL(add(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 38
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(p(X)) -> PROPER(X)
PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(p(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(prod(x1, x2))=  x1 + x2  
  POL(PROPER(x1))=  x1  
  POL(p(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 39
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(prod(X1, X2)) -> PROPER(X2)
PROPER(prod(X1, X2)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(prod(x1, x2))=  1 + x1 + x2  
  POL(PROPER(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 40
Dependency Graph
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(prod(0, X)) -> mark(0)
active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(zero(0)) -> mark(true)
active(zero(s(X))) -> mark(false)
active(p(s(X))) -> mark(X)
active(fact(X)) -> fact(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(zero(X)) -> zero(active(X))
active(s(X)) -> s(active(X))
active(prod(X1, X2)) -> prod(active(X1), X2)
active(prod(X1, X2)) -> prod(X1, active(X2))
active(p(X)) -> p(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fact(mark(X)) -> mark(fact(X))
fact(ok(X)) -> ok(fact(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
zero(mark(X)) -> mark(zero(X))
zero(ok(X)) -> ok(zero(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
prod(mark(X1), X2) -> mark(prod(X1, X2))
prod(X1, mark(X2)) -> mark(prod(X1, X2))
prod(ok(X1), ok(X2)) -> ok(prod(X1, X2))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fact(X)) -> fact(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) -> zero(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(prod(X1, X2)) -> prod(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))




Termination of R could not be shown.
Duration:
0:01 minutes