Term Rewriting System R:
[X, Y, X1, X2]
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ANATS -> AADX(azeros)
ANATS -> AZEROS
AADX(cons(X, Y)) -> AINCR(cons(X, adx(Y)))
AHD(cons(X, Y)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(nats) -> ANATS
MARK(adx(X)) -> AADX(mark(X))
MARK(adx(X)) -> MARK(X)
MARK(zeros) -> AZEROS
MARK(incr(X)) -> AINCR(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(hd(X)) -> AHD(mark(X))
MARK(hd(X)) -> MARK(X)
MARK(tl(X)) -> ATL(mark(X))
MARK(tl(X)) -> MARK(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

MARK(tl(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(X)) -> ATL(mark(X))
MARK(hd(X)) -> MARK(X)
MARK(hd(X)) -> AHD(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(X)) -> AHD(mark(X))
nine new Dependency Pairs are created:

MARK(hd(nats)) -> AHD(anats)
MARK(hd(adx(X''))) -> AHD(aadx(mark(X'')))
MARK(hd(zeros)) -> AHD(azeros)
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(0)) -> AHD(0)
MARK(hd(s(X''))) -> AHD(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(hd(zeros)) -> AHD(azeros)
MARK(hd(adx(X''))) -> AHD(aadx(mark(X'')))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(nats)) -> AHD(anats)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(X)) -> ATL(mark(X))
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
MARK(tl(X)) -> MARK(X)


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(X)) -> ATL(mark(X))
nine new Dependency Pairs are created:

MARK(tl(nats)) -> ATL(anats)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(0)) -> ATL(0)
MARK(tl(s(X''))) -> ATL(s(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(hd(zeros)) -> AHD(azeros)
MARK(hd(adx(X''))) -> AHD(aadx(mark(X'')))
MARK(hd(nats)) -> AHD(anats)
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(nats)) -> AHD(anats)
two new Dependency Pairs are created:

MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(hd(nats)) -> AHD(nats)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Narrowing Transformation


Dependency Pairs:

MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(hd(zeros)) -> AHD(azeros)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(adx(X''))) -> AHD(aadx(mark(X'')))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(adx(X''))) -> AHD(aadx(mark(X'')))
10 new Dependency Pairs are created:

MARK(hd(adx(X'''))) -> AHD(adx(mark(X''')))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Narrowing Transformation


Dependency Pairs:

MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(hd(zeros)) -> AHD(azeros)
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(nats)) -> AHD(aadx(azeros))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(zeros)) -> AHD(azeros)
two new Dependency Pairs are created:

MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(zeros)) -> AHD(zeros)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 6
Narrowing Transformation


Dependency Pairs:

MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(incr(X''))) -> AHD(aincr(mark(X'')))
10 new Dependency Pairs are created:

MARK(hd(incr(X'''))) -> AHD(incr(mark(X''')))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 7
Narrowing Transformation


Dependency Pairs:

MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(zeros)) -> AHD(cons(0, zeros))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(hd(X''))) -> AHD(ahd(mark(X'')))
10 new Dependency Pairs are created:

MARK(hd(hd(X'''))) -> AHD(hd(mark(X''')))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 8
Narrowing Transformation


Dependency Pairs:

MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(hd(tl(X''))) -> AHD(atl(mark(X'')))
10 new Dependency Pairs are created:

MARK(hd(tl(X'''))) -> AHD(tl(mark(X''')))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 9
Narrowing Transformation


Dependency Pairs:

MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(anats)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(nats)) -> ATL(anats)
two new Dependency Pairs are created:

MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(tl(nats)) -> ATL(nats)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 10
Narrowing Transformation


Dependency Pairs:

MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(adx(X''))) -> ATL(aadx(mark(X'')))
10 new Dependency Pairs are created:

MARK(tl(adx(X'''))) -> ATL(adx(mark(X''')))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 11
Narrowing Transformation


Dependency Pairs:

MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
MARK(tl(zeros)) -> ATL(azeros)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(nats)) -> ATL(aadx(azeros))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(zeros)) -> ATL(azeros)
two new Dependency Pairs are created:

MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(zeros)) -> ATL(zeros)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 12
Narrowing Transformation


Dependency Pairs:

MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(incr(X''))) -> ATL(aincr(mark(X'')))
10 new Dependency Pairs are created:

MARK(tl(incr(X'''))) -> ATL(incr(mark(X''')))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 13
Narrowing Transformation


Dependency Pairs:

MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(zeros)) -> ATL(cons(0, zeros))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(hd(X''))) -> ATL(ahd(mark(X'')))
10 new Dependency Pairs are created:

MARK(tl(hd(X'''))) -> ATL(hd(mark(X''')))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 14
Narrowing Transformation


Dependency Pairs:

MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tl(tl(X''))) -> ATL(atl(mark(X'')))
10 new Dependency Pairs are created:

MARK(tl(tl(X'''))) -> ATL(tl(mark(X''')))
MARK(tl(tl(nats))) -> ATL(atl(anats))
MARK(tl(tl(adx(X')))) -> ATL(atl(aadx(mark(X'))))
MARK(tl(tl(zeros))) -> ATL(atl(azeros))
MARK(tl(tl(incr(X')))) -> ATL(atl(aincr(mark(X'))))
MARK(tl(tl(hd(X')))) -> ATL(atl(ahd(mark(X'))))
MARK(tl(tl(tl(X')))) -> ATL(atl(atl(mark(X'))))
MARK(tl(tl(cons(X1', X2')))) -> ATL(atl(cons(X1', X2')))
MARK(tl(tl(0))) -> ATL(atl(0))
MARK(tl(tl(s(X')))) -> ATL(atl(s(X')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 15
Polynomial Ordering


Dependency Pairs:

MARK(tl(tl(s(X')))) -> ATL(atl(s(X')))
MARK(tl(tl(0))) -> ATL(atl(0))
MARK(tl(tl(cons(X1', X2')))) -> ATL(atl(cons(X1', X2')))
MARK(tl(tl(tl(X')))) -> ATL(atl(atl(mark(X'))))
MARK(tl(tl(hd(X')))) -> ATL(atl(ahd(mark(X'))))
MARK(tl(tl(incr(X')))) -> ATL(atl(aincr(mark(X'))))
MARK(tl(tl(zeros))) -> ATL(atl(azeros))
MARK(tl(tl(adx(X')))) -> ATL(atl(aadx(mark(X'))))
MARK(tl(tl(nats))) -> ATL(atl(anats))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(nats)) -> AHD(aadx(azeros))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





The following dependency pairs can be strictly oriented:

MARK(tl(nats)) -> ATL(aadx(azeros))
MARK(hd(nats)) -> AHD(aadx(azeros))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(a__nats)=  1  
  POL(MARK(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(a__zeros)=  0  
  POL(incr(x1))=  x1  
  POL(A__TL(x1))=  x1  
  POL(a__hd(x1))=  x1  
  POL(a__tl(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  x1  
  POL(a__adx(x1))=  x1  
  POL(A__HD(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  x1  
  POL(nats)=  1  
  POL(s(x1))=  0  
  POL(zeros)=  0  
  POL(a__incr(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 16
Polynomial Ordering


Dependency Pairs:

MARK(tl(tl(s(X')))) -> ATL(atl(s(X')))
MARK(tl(tl(0))) -> ATL(atl(0))
MARK(tl(tl(cons(X1', X2')))) -> ATL(atl(cons(X1', X2')))
MARK(tl(tl(tl(X')))) -> ATL(atl(atl(mark(X'))))
MARK(tl(tl(hd(X')))) -> ATL(atl(ahd(mark(X'))))
MARK(tl(tl(incr(X')))) -> ATL(atl(aincr(mark(X'))))
MARK(tl(tl(zeros))) -> ATL(atl(azeros))
MARK(tl(tl(adx(X')))) -> ATL(atl(aadx(mark(X'))))
MARK(tl(tl(nats))) -> ATL(atl(anats))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





The following dependency pair can be strictly oriented:

MARK(adx(X)) -> MARK(X)


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(a__nats)=  1  
  POL(MARK(x1))=  x1  
  POL(adx(x1))=  1 + x1  
  POL(a__zeros)=  0  
  POL(incr(x1))=  x1  
  POL(A__TL(x1))=  x1  
  POL(a__hd(x1))=  x1  
  POL(a__tl(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  x1  
  POL(a__adx(x1))=  1 + x1  
  POL(A__HD(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  x1  
  POL(nats)=  1  
  POL(s(x1))=  0  
  POL(zeros)=  0  
  POL(a__incr(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 17
Polynomial Ordering


Dependency Pairs:

MARK(tl(tl(s(X')))) -> ATL(atl(s(X')))
MARK(tl(tl(0))) -> ATL(atl(0))
MARK(tl(tl(cons(X1', X2')))) -> ATL(atl(cons(X1', X2')))
MARK(tl(tl(tl(X')))) -> ATL(atl(atl(mark(X'))))
MARK(tl(tl(hd(X')))) -> ATL(atl(ahd(mark(X'))))
MARK(tl(tl(incr(X')))) -> ATL(atl(aincr(mark(X'))))
MARK(tl(tl(zeros))) -> ATL(atl(azeros))
MARK(tl(tl(adx(X')))) -> ATL(atl(aadx(mark(X'))))
MARK(tl(tl(nats))) -> ATL(atl(anats))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)
MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





The following dependency pairs can be strictly oriented:

MARK(tl(tl(s(X')))) -> ATL(atl(s(X')))
MARK(tl(tl(0))) -> ATL(atl(0))
MARK(tl(tl(cons(X1', X2')))) -> ATL(atl(cons(X1', X2')))
MARK(tl(tl(tl(X')))) -> ATL(atl(atl(mark(X'))))
MARK(tl(tl(hd(X')))) -> ATL(atl(ahd(mark(X'))))
MARK(tl(tl(incr(X')))) -> ATL(atl(aincr(mark(X'))))
MARK(tl(tl(zeros))) -> ATL(atl(azeros))
MARK(tl(tl(adx(X')))) -> ATL(atl(aadx(mark(X'))))
MARK(tl(tl(nats))) -> ATL(atl(anats))
MARK(tl(hd(0))) -> ATL(ahd(0))
MARK(tl(hd(cons(X1', X2')))) -> ATL(ahd(cons(X1', X2')))
MARK(tl(hd(tl(X')))) -> ATL(ahd(atl(mark(X'))))
MARK(tl(hd(hd(X')))) -> ATL(ahd(ahd(mark(X'))))
MARK(tl(hd(incr(X')))) -> ATL(ahd(aincr(mark(X'))))
MARK(tl(hd(zeros))) -> ATL(ahd(azeros))
MARK(tl(hd(adx(X')))) -> ATL(ahd(aadx(mark(X'))))
MARK(tl(hd(nats))) -> ATL(ahd(anats))
MARK(tl(incr(s(X')))) -> ATL(aincr(s(X')))
MARK(tl(incr(0))) -> ATL(aincr(0))
MARK(tl(incr(cons(X1', X2')))) -> ATL(aincr(cons(X1', X2')))
MARK(tl(incr(tl(X')))) -> ATL(aincr(atl(mark(X'))))
MARK(tl(incr(hd(X')))) -> ATL(aincr(ahd(mark(X'))))
MARK(tl(incr(incr(X')))) -> ATL(aincr(aincr(mark(X'))))
MARK(tl(incr(zeros))) -> ATL(aincr(azeros))
MARK(tl(incr(adx(X')))) -> ATL(aincr(aadx(mark(X'))))
MARK(tl(incr(nats))) -> ATL(aincr(anats))
MARK(tl(zeros)) -> ATL(cons(0, zeros))
MARK(tl(adx(s(X')))) -> ATL(aadx(s(X')))
MARK(tl(adx(0))) -> ATL(aadx(0))
MARK(tl(adx(cons(X1', X2')))) -> ATL(aadx(cons(X1', X2')))
MARK(tl(adx(tl(X')))) -> ATL(aadx(atl(mark(X'))))
MARK(tl(adx(hd(X')))) -> ATL(aadx(ahd(mark(X'))))
MARK(tl(adx(incr(X')))) -> ATL(aadx(aincr(mark(X'))))
MARK(tl(adx(zeros))) -> ATL(aadx(azeros))
MARK(tl(adx(adx(X')))) -> ATL(aadx(aadx(mark(X'))))
MARK(tl(adx(nats))) -> ATL(aadx(anats))
MARK(tl(cons(X1', X2'))) -> ATL(cons(X1', X2'))
MARK(tl(X)) -> MARK(X)
MARK(tl(hd(s(X')))) -> ATL(ahd(s(X')))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(a__nats)=  0  
  POL(MARK(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(a__zeros)=  0  
  POL(incr(x1))=  x1  
  POL(A__TL(x1))=  x1  
  POL(a__hd(x1))=  x1  
  POL(a__tl(x1))=  1 + x1  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  1 + x1  
  POL(a__adx(x1))=  x1  
  POL(A__HD(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  x1  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  
  POL(a__incr(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 18
Dependency Graph


Dependency Pairs:

MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))
MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
ATL(cons(X, Y)) -> MARK(Y)


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 19
Polynomial Ordering


Dependency Pairs:

MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





The following dependency pairs can be strictly oriented:

MARK(hd(tl(0))) -> AHD(atl(0))
MARK(hd(tl(cons(X1', X2')))) -> AHD(atl(cons(X1', X2')))
MARK(hd(tl(tl(X')))) -> AHD(atl(atl(mark(X'))))
MARK(hd(tl(hd(X')))) -> AHD(atl(ahd(mark(X'))))
MARK(hd(tl(incr(X')))) -> AHD(atl(aincr(mark(X'))))
MARK(hd(tl(zeros))) -> AHD(atl(azeros))
MARK(hd(tl(adx(X')))) -> AHD(atl(aadx(mark(X'))))
MARK(hd(tl(nats))) -> AHD(atl(anats))
MARK(hd(hd(s(X')))) -> AHD(ahd(s(X')))
MARK(hd(hd(0))) -> AHD(ahd(0))
MARK(hd(hd(cons(X1', X2')))) -> AHD(ahd(cons(X1', X2')))
MARK(hd(hd(tl(X')))) -> AHD(ahd(atl(mark(X'))))
MARK(hd(hd(hd(X')))) -> AHD(ahd(ahd(mark(X'))))
MARK(hd(hd(incr(X')))) -> AHD(ahd(aincr(mark(X'))))
MARK(hd(hd(zeros))) -> AHD(ahd(azeros))
MARK(hd(hd(adx(X')))) -> AHD(ahd(aadx(mark(X'))))
MARK(hd(hd(nats))) -> AHD(ahd(anats))
MARK(hd(incr(s(X')))) -> AHD(aincr(s(X')))
MARK(hd(incr(0))) -> AHD(aincr(0))
MARK(hd(incr(cons(X1', X2')))) -> AHD(aincr(cons(X1', X2')))
MARK(hd(incr(tl(X')))) -> AHD(aincr(atl(mark(X'))))
MARK(hd(incr(hd(X')))) -> AHD(aincr(ahd(mark(X'))))
MARK(hd(incr(incr(X')))) -> AHD(aincr(aincr(mark(X'))))
MARK(hd(incr(zeros))) -> AHD(aincr(azeros))
MARK(hd(incr(adx(X')))) -> AHD(aincr(aadx(mark(X'))))
MARK(hd(incr(nats))) -> AHD(aincr(anats))
MARK(hd(zeros)) -> AHD(cons(0, zeros))
MARK(hd(adx(s(X')))) -> AHD(aadx(s(X')))
MARK(hd(adx(0))) -> AHD(aadx(0))
MARK(hd(adx(cons(X1', X2')))) -> AHD(aadx(cons(X1', X2')))
MARK(hd(adx(tl(X')))) -> AHD(aadx(atl(mark(X'))))
MARK(hd(adx(hd(X')))) -> AHD(aadx(ahd(mark(X'))))
MARK(hd(adx(incr(X')))) -> AHD(aadx(aincr(mark(X'))))
MARK(hd(adx(zeros))) -> AHD(aadx(azeros))
MARK(hd(adx(adx(X')))) -> AHD(aadx(aadx(mark(X'))))
MARK(hd(adx(nats))) -> AHD(aadx(anats))
MARK(hd(cons(X1', X2'))) -> AHD(cons(X1', X2'))
MARK(hd(X)) -> MARK(X)
MARK(hd(tl(s(X')))) -> AHD(atl(s(X')))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(a__nats)=  0  
  POL(MARK(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(a__zeros)=  0  
  POL(incr(x1))=  x1  
  POL(a__hd(x1))=  1 + x1  
  POL(a__tl(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  x1  
  POL(a__adx(x1))=  x1  
  POL(A__HD(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  1 + x1  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  
  POL(a__incr(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 20
Dependency Graph


Dependency Pairs:

MARK(incr(X)) -> MARK(X)
AHD(cons(X, Y)) -> MARK(X)


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 21
Polynomial Ordering


Dependency Pair:

MARK(incr(X)) -> MARK(X)


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





The following dependency pair can be strictly oriented:

MARK(incr(X)) -> MARK(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MARK(x1))=  x1  
  POL(incr(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 22
Dependency Graph


Dependency Pair:


Rules:


anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
aincr(cons(X, Y)) -> cons(s(X), incr(Y))
aincr(X) -> incr(X)
aadx(cons(X, Y)) -> aincr(cons(X, adx(Y)))
aadx(X) -> adx(X)
ahd(cons(X, Y)) -> mark(X)
ahd(X) -> hd(X)
atl(cons(X, Y)) -> mark(Y)
atl(X) -> tl(X)
mark(nats) -> anats
mark(adx(X)) -> aadx(mark(X))
mark(zeros) -> azeros
mark(incr(X)) -> aincr(mark(X))
mark(hd(X)) -> ahd(mark(X))
mark(tl(X)) -> atl(mark(X))
mark(cons(X1, X2)) -> cons(X1, X2)
mark(0) -> 0
mark(s(X)) -> s(X)





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:30 minutes