Term Rewriting System R:
[X, Y, X1, X2]
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
active(nats) -> mark(adx(zeros))
where the Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(top(x1)) | = 1 + x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = x1 |
POL(nats) | = 1 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
active(tl(cons(X, Y))) -> mark(Y)
where the Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(top(x1)) | = 1 + x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = x1 |
POL(nats) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(adx(cons(X, Y))) -> INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) -> CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) -> ADX(Y)
ACTIVE(tl(X)) -> TL(active(X))
ACTIVE(tl(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ADX(active(X))
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) -> CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) -> S(X)
ACTIVE(incr(cons(X, Y))) -> INCR(Y)
ACTIVE(incr(X)) -> INCR(active(X))
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> HD(active(X))
ACTIVE(hd(X)) -> ACTIVE(X)
ADX(mark(X)) -> ADX(X)
ADX(ok(X)) -> ADX(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
INCR(mark(X)) -> INCR(X)
INCR(ok(X)) -> INCR(X)
HD(mark(X)) -> HD(X)
HD(ok(X)) -> HD(X)
PROPER(hd(X)) -> HD(proper(X))
PROPER(hd(X)) -> PROPER(X)
PROPER(tl(X)) -> TL(proper(X))
PROPER(tl(X)) -> PROPER(X)
PROPER(adx(X)) -> ADX(proper(X))
PROPER(adx(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(incr(X)) -> INCR(proper(X))
PROPER(incr(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
TL(ok(X)) -> TL(X)
TL(mark(X)) -> TL(X)
S(ok(X)) -> S(X)
Furthermore, R contains nine SCCs.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- INCR(ok(X)) -> INCR(X)
- INCR(mark(X)) -> INCR(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 3
↳Size-Change Principle
Dependency Pairs:
ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- ADX(ok(X)) -> ADX(X)
- ADX(mark(X)) -> ADX(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 4
↳Size-Change Principle
Dependency Pairs:
TL(mark(X)) -> TL(X)
TL(ok(X)) -> TL(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- TL(mark(X)) -> TL(X)
- TL(ok(X)) -> TL(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 5
↳Size-Change Principle
Dependency Pair:
S(ok(X)) -> S(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 6
↳Size-Change Principle
Dependency Pairs:
HD(ok(X)) -> HD(X)
HD(mark(X)) -> HD(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- HD(ok(X)) -> HD(X)
- HD(mark(X)) -> HD(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 7
↳Size-Change Principle
Dependency Pairs:
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(tl(X)) -> ACTIVE(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- ACTIVE(hd(X)) -> ACTIVE(X)
- ACTIVE(incr(X)) -> ACTIVE(X)
- ACTIVE(adx(X)) -> ACTIVE(X)
- ACTIVE(tl(X)) -> ACTIVE(X)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
adx(x1) -> adx(x1)
hd(x1) -> hd(x1)
incr(x1) -> incr(x1)
tl(x1) -> tl(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 8
↳Size-Change Principle
Dependency Pairs:
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(adx(X)) -> PROPER(X)
PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We number the DPs as follows:
- PROPER(s(X)) -> PROPER(X)
- PROPER(incr(X)) -> PROPER(X)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(adx(X)) -> PROPER(X)
- PROPER(tl(X)) -> PROPER(X)
- PROPER(hd(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
adx(x1) -> adx(x1)
cons(x1, x2) -> cons(x1, x2)
hd(x1) -> hd(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
tl(x1) -> tl(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 9
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
We have the following set of usable rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = x1 |
POL(nats) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
We have the following set D of usable symbols: {proper, adx, incr, mark, tl, TOP, ok, active, 0, cons, hd, nats, s, zeros}
No Dependency Pairs can be deleted.
2 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 10
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(cons(X, Y))) -> mark(X)
active(hd(X)) -> hd(active(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = 1 + x1 |
POL(nats) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
We have the following set D of usable symbols: {proper, adx, incr, mark, tl, TOP, ok, active, 0, cons, hd, nats, s, zeros}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
active(hd(cons(X, Y))) -> mark(X)
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 11
↳Argument Filtering and Ordering
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
The following dependency pair can be strictly oriented:
TOP(mark(X)) -> TOP(proper(X))
The following usable rules w.r.t. the AFS can be oriented:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
Used ordering: Lexicographic Path Order with Precedence:
adx > incr > mark
zeros > mark
zeros > 0
resulting in one new DP problem.
Used Argument Filtering System: TOP(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
adx(x1) -> adx(x1)
incr(x1) -> incr(x1)
cons(x1, x2) -> x1
mark(x1) -> mark(x1)
tl(x1) -> x1
hd(x1) -> x1
s(x1) -> x1
proper(x1) -> x1
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 12
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
proper(nats) -> ok(nats)
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(s(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = x1 |
POL(zeros) | = 0 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
We have the following set D of usable symbols: {active, 0, adx, cons, hd, incr, s, zeros, tl, mark, TOP, ok}
No Dependency Pairs can be deleted.
9 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳DPs
...
→DP Problem 13
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
s(ok(X)) -> ok(s(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
We have the following set of usable rules:
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(tl(X)) -> tl(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
tl(ok(X)) -> ok(tl(X))
tl(mark(X)) -> mark(tl(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(hd(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(s(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(tl(x1)) | = x1 |
POL(zeros) | = 0 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = 1 + x1 |
We have the following set D of usable symbols: {active, 0, adx, cons, hd, incr, s, zeros, tl, mark, TOP, ok}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
TOP(ok(X)) -> TOP(active(X))
No Rules can be deleted.
After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.
Termination of R successfully shown.
Duration:
0:12 minutes