Term Rewriting System R:
[X, Y, X1, X2]
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(nats) -> ADX(zeros)
ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) -> CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) -> S(X)
ACTIVE(incr(cons(X, Y))) -> INCR(Y)
ACTIVE(adx(cons(X, Y))) -> INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) -> CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) -> ADX(Y)
ACTIVE(adx(X)) -> ADX(active(X))
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> INCR(active(X))
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> HD(active(X))
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(tl(X)) -> TL(active(X))
ACTIVE(tl(X)) -> ACTIVE(X)
ADX(mark(X)) -> ADX(X)
ADX(ok(X)) -> ADX(X)
INCR(mark(X)) -> INCR(X)
INCR(ok(X)) -> INCR(X)
HD(mark(X)) -> HD(X)
HD(ok(X)) -> HD(X)
TL(mark(X)) -> TL(X)
TL(ok(X)) -> TL(X)
PROPER(adx(X)) -> ADX(proper(X))
PROPER(adx(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(incr(X)) -> INCR(proper(X))
PROPER(incr(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(hd(X)) -> HD(proper(X))
PROPER(hd(X)) -> PROPER(X)
PROPER(tl(X)) -> TL(proper(X))
PROPER(tl(X)) -> PROPER(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(ok(X)) -> S(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains nine SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ok(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 10
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

S(ok(X)) -> S(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 11
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

INCR(ok(X)) -> INCR(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(INCR(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 12
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

INCR(mark(X)) -> INCR(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

INCR(mark(X)) -> INCR(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(INCR(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 12
Polo
             ...
               →DP Problem 13
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ADX(ok(X)) -> ADX(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ADX(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 14
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

ADX(mark(X)) -> ADX(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ADX(mark(X)) -> ADX(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ADX(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 14
Polo
             ...
               →DP Problem 15
Dependency Graph
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

HD(ok(X)) -> HD(X)
HD(mark(X)) -> HD(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

HD(ok(X)) -> HD(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HD(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 16
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

HD(mark(X)) -> HD(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

HD(mark(X)) -> HD(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HD(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 16
Polo
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

TL(ok(X)) -> TL(X)
TL(mark(X)) -> TL(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TL(ok(X)) -> TL(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(TL(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 18
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

TL(mark(X)) -> TL(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TL(mark(X)) -> TL(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(TL(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 18
Polo
             ...
               →DP Problem 19
Dependency Graph
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

ACTIVE(tl(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(tl(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(hd(x1))=  x1  
  POL(incr(x1))=  x1  
  POL(tl(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(hd(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(hd(x1))=  1 + x1  
  POL(incr(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pairs:

ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(incr(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(adx(x1))=  x1  
  POL(incr(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 22
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:

ACTIVE(adx(X)) -> ACTIVE(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(adx(X)) -> ACTIVE(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(adx(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 23
Dependency Graph
       →DP Problem 8
Polo
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pairs:

PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(adx(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(adx(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(hd(x1))=  x1  
  POL(incr(x1))=  x1  
  POL(s(x1))=  x1  
  POL(tl(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pairs:

PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(adx(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(adx(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(adx(x1))=  1 + x1  
  POL(PROPER(x1))=  x1  
  POL(hd(x1))=  x1  
  POL(incr(x1))=  x1  
  POL(s(x1))=  x1  
  POL(tl(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 25
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pairs:

PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(tl(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(hd(x1))=  x1  
  POL(incr(x1))=  x1  
  POL(s(x1))=  x1  
  POL(tl(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 26
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pairs:

PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(hd(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(hd(x1))=  1 + x1  
  POL(incr(x1))=  x1  
  POL(s(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 27
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pairs:

PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(incr(x1))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 28
Polynomial Ordering
       →DP Problem 9
Nar


Dependency Pair:

PROPER(incr(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(incr(X)) -> PROPER(X)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(incr(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 24
Polo
             ...
               →DP Problem 29
Dependency Graph
       →DP Problem 9
Nar


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Narrowing Transformation


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(X)) -> TOP(proper(X))
nine new Dependency Pairs are created:

TOP(mark(nats)) -> TOP(ok(nats))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Narrowing Transformation


Dependency Pairs:

TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(nats)) -> TOP(ok(nats))
TOP(ok(X)) -> TOP(active(X))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(X)) -> TOP(active(X))
10 new Dependency Pairs are created:

TOP(ok(nats)) -> TOP(mark(adx(zeros)))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(hd(cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(tl(cons(X'', Y')))) -> TOP(mark(Y'))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(tl(X''))) -> TOP(tl(active(X'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 31
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(tl(cons(X'', Y')))) -> TOP(mark(Y'))
TOP(ok(hd(cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(ok(nats)) -> TOP(mark(adx(zeros)))
TOP(mark(nats)) -> TOP(ok(nats))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(hd(cons(X'', Y')))) -> TOP(mark(X''))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  x1  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  1 + x1  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 32
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(tl(cons(X'', Y')))) -> TOP(mark(Y'))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(ok(nats)) -> TOP(mark(adx(zeros)))
TOP(mark(nats)) -> TOP(ok(nats))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(tl(cons(X'', Y')))) -> TOP(mark(Y'))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  x1  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  1 + x1  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(hd(x1))=  x1  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 33
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(ok(nats)) -> TOP(mark(adx(zeros)))
TOP(mark(nats)) -> TOP(ok(nats))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(mark(nats)) -> TOP(ok(nats))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  0  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  1  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 34
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(ok(nats)) -> TOP(mark(adx(zeros)))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(nats)) -> TOP(mark(adx(zeros)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  0  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  1  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 35
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(zeros)) -> TOP(ok(zeros))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(mark(zeros)) -> TOP(ok(zeros))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  0  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 36
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(zeros)) -> TOP(mark(cons(0, zeros)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  0  
  POL(incr(x1))=  0  
  POL(mark(x1))=  0  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 37
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(adx(cons(X'', Y')))) -> TOP(mark(incr(cons(X'', adx(Y')))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  1  
  POL(incr(x1))=  0  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 38
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(incr(cons(X'', Y')))) -> TOP(mark(cons(s(X''), incr(Y'))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  0  
  POL(incr(x1))=  1  
  POL(mark(x1))=  x1  
  POL(tl(x1))=  0  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  0  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 39
Polynomial Ordering


Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(proper(x1))=  0  
  POL(adx(x1))=  1  
  POL(incr(x1))=  1  
  POL(mark(x1))=  1  
  POL(tl(x1))=  1  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(active(x1))=  0  
  POL(0)=  0  
  POL(cons(x1, x2))=  0  
  POL(hd(x1))=  1  
  POL(nats)=  0  
  POL(s(x1))=  0  
  POL(zeros)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Nar
           →DP Problem 30
Nar
             ...
               →DP Problem 40
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(tl(X''))) -> TOP(tl(active(X'')))
TOP(ok(hd(X''))) -> TOP(hd(active(X'')))
TOP(ok(incr(X''))) -> TOP(incr(active(X'')))
TOP(ok(adx(X''))) -> TOP(adx(active(X'')))
TOP(mark(hd(X''))) -> TOP(hd(proper(X'')))
TOP(mark(incr(X''))) -> TOP(incr(proper(X'')))
TOP(mark(adx(X''))) -> TOP(adx(proper(X'')))
TOP(mark(tl(X''))) -> TOP(tl(proper(X'')))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))




Termination of R could not be shown.
Duration:
0:36 minutes