Term Rewriting System R:
[X, Y, X1, X2]
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(nats) -> ADX(zeros)
ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) -> CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) -> S(X)
ACTIVE(incr(cons(X, Y))) -> INCR(Y)
ACTIVE(adx(cons(X, Y))) -> INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) -> CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) -> ADX(Y)
ACTIVE(adx(X)) -> ADX(active(X))
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> INCR(active(X))
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> HD(active(X))
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(tl(X)) -> TL(active(X))
ACTIVE(tl(X)) -> ACTIVE(X)
ADX(mark(X)) -> ADX(X)
ADX(ok(X)) -> ADX(X)
INCR(mark(X)) -> INCR(X)
INCR(ok(X)) -> INCR(X)
HD(mark(X)) -> HD(X)
HD(ok(X)) -> HD(X)
TL(mark(X)) -> TL(X)
TL(ok(X)) -> TL(X)
PROPER(adx(X)) -> ADX(proper(X))
PROPER(adx(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(incr(X)) -> INCR(proper(X))
PROPER(incr(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(hd(X)) -> HD(proper(X))
PROPER(hd(X)) -> PROPER(X)
PROPER(tl(X)) -> TL(proper(X))
PROPER(tl(X)) -> PROPER(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(ok(X)) -> S(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains nine SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
CONS(x1, x2) -> CONS(x1, x2)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:

S(ok(X)) -> S(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
S(x1) -> S(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
INCR(x1) -> INCR(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ADX(x1) -> ADX(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 13
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

HD(ok(X)) -> HD(X)
HD(mark(X)) -> HD(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

HD(ok(X)) -> HD(X)
HD(mark(X)) -> HD(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
HD(x1) -> HD(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 14
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

TL(ok(X)) -> TL(X)
TL(mark(X)) -> TL(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

TL(ok(X)) -> TL(X)
TL(mark(X)) -> TL(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
TL(x1) -> TL(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 15
Dependency Graph
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Argument Filtering and Ordering
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(tl(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

ACTIVE(tl(X)) -> ACTIVE(X)
ACTIVE(hd(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
tl(x1) -> tl(x1)
adx(x1) -> adx(x1)
incr(x1) -> incr(x1)
hd(x1) -> hd(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 16
Dependency Graph
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(adx(X)) -> PROPER(X)


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

PROPER(tl(X)) -> PROPER(X)
PROPER(hd(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(adx(X)) -> PROPER(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
cons(x1, x2) -> cons(x1, x2)
tl(x1) -> tl(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
adx(x1) -> adx(x1)
hd(x1) -> hd(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
           →DP Problem 17
Dependency Graph
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) -> mark(X)
active(tl(cons(X, Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
hd(mark(X)) -> mark(hd(X))
hd(ok(X)) -> ok(hd(X))
tl(mark(X)) -> mark(tl(X))
tl(ok(X)) -> ok(tl(X))
proper(nats) -> ok(nats)
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))




Termination of R could not be shown.
Duration:
0:00 minutes