R
↳Removing Redundant Rules
aadx(nil) -> nil
was used.
POL(a__nats) = 0 POL(adx(x1)) = 2·x1 POL(a__zeros) = 0 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = 2·x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 1 POL(a__tail(x1)) = x1 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
R
↳RRRPolo
→TRS2
↳Removing Redundant Rules
anats -> aadx(azeros)
was used.
POL(a__nats) = 1 POL(adx(x1)) = x1 POL(a__zeros) = 0 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 1 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳Removing Redundant Rules
ahead(cons(X, L)) -> mark(X)
was used.
POL(a__nats) = 0 POL(adx(x1)) = x1 POL(a__zeros) = 0 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = 1 + x1 POL(a__head(x1)) = 1 + x1 POL(a__incr(x1)) = x1
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS4
↳Removing Redundant Rules
atail(cons(X, L)) -> mark(L)
was used.
POL(a__nats) = 0 POL(adx(x1)) = x1 POL(a__zeros) = 0 POL(tail(x1)) = 1 + x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = 1 + x1 POL(zeros) = 0 POL(head(x1)) = x1 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS5
↳Dependency Pair Analysis
MARK(nats) -> ANATS
MARK(s(X)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
MARK(head(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(incr(X)) -> AINCR(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(zeros) -> AZEROS
MARK(adx(X)) -> AADX(mark(X))
MARK(adx(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
AADX(cons(X, L)) -> MARK(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 1
↳Modular Removal of Rules
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(head(X)) -> MARK(X)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
atail(X) -> tail(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
POL(a__nats) = 0 POL(MARK(x1)) = x1 POL(adx(x1)) = 1 + x1 POL(a__zeros) = 0 POL(A__ADX(x1)) = 1 + x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = 1 + x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = x1 POL(head(x1)) = x1 POL(zeros) = 0 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 2
↳Modular Removal of Rules
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(head(X)) -> MARK(X)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
atail(X) -> tail(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
POL(a__nats) = 0 POL(adx(x1)) = x1 POL(MARK(x1)) = x1 POL(a__zeros) = 0 POL(A__ADX(x1)) = x1 POL(tail(x1)) = 1 + x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = 1 + x1 POL(head(x1)) = x1 POL(zeros) = 0 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
MARK(tail(X)) -> MARK(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 3
↳Modular Removal of Rules
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(head(X)) -> MARK(X)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
atail(X) -> tail(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
POL(a__nats) = 0 POL(adx(x1)) = x1 POL(MARK(x1)) = x1 POL(a__zeros) = 0 POL(A__ADX(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(a__tail(x1)) = x1 POL(head(x1)) = 1 + x1 POL(zeros) = 0 POL(a__head(x1)) = 1 + x1 POL(a__incr(x1)) = x1
MARK(head(X)) -> MARK(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 4
↳Negative Polynomial Order
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
atail(X) -> tail(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
POL( AADX(x1) ) = x1 + 1
POL( cons(x1, x2) ) = x1
POL( AINCR(x1) ) = x1
POL( mark(x1) ) = x1
POL( MARK(x1) ) = x1
POL( s(x1) ) = x1
POL( incr(x1) ) = x1
POL( adx(x1) ) = x1 + 1
POL( nats ) = 0
POL( anats ) = 0
POL( head(x1) ) = 0
POL( ahead(x1) ) = 0
POL( nil ) = 0
POL( aincr(x1) ) = x1
POL( tail(x1) ) = 0
POL( atail(x1) ) = 0
POL( zeros ) = 0
POL( azeros ) = 0
POL( aadx(x1) ) = x1 + 1
POL( 0 ) = 0
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 5
↳Dependency Graph
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 6
↳Negative Polynomial Order
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
atail(X) -> tail(X)
azeros -> cons(0, zeros)
azeros -> zeros
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
POL( AINCR(x1) ) = x1
POL( cons(x1, x2) ) = x1 + 1
POL( MARK(x1) ) = x1
POL( s(x1) ) = x1
POL( incr(x1) ) = x1
POL( mark(x1) ) = x1
POL( nats ) = 0
POL( anats ) = 0
POL( head(x1) ) = 0
POL( ahead(x1) ) = 0
POL( nil ) = 0
POL( aincr(x1) ) = x1
POL( tail(x1) ) = 0
POL( atail(x1) ) = 0
POL( zeros ) = 1
POL( azeros ) = 1
POL( adx(x1) ) = x1
POL( aadx(x1) ) = x1
POL( 0 ) = 0
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 7
↳Dependency Graph
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 8
↳Size-Change Principle
MARK(incr(X)) -> MARK(X)
MARK(s(X)) -> MARK(X)
mark(nats) -> anats
mark(s(X)) -> s(mark(X))
mark(head(X)) -> ahead(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(incr(X)) -> aincr(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(zeros) -> azeros
mark(adx(X)) -> aadx(mark(X))
mark(0) -> 0
anats -> nats
ahead(X) -> head(X)
aincr(X) -> incr(X)
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(nil) -> nil
aadx(X) -> adx(X)
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
azeros -> cons(0, zeros)
azeros -> zeros
atail(X) -> tail(X)
|
|
trivial
incr(x1) -> incr(x1)
s(x1) -> s(x1)