R
↳Dependency Pair Analysis
AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
AADX(cons(X, L)) -> MARK(X)
ANATS -> AADX(azeros)
ANATS -> AZEROS
AHEAD(cons(X, L)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(incr(X)) -> AINCR(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> AADX(mark(X))
MARK(adx(X)) -> MARK(X)
MARK(nats) -> ANATS
MARK(zeros) -> AZEROS
MARK(head(X)) -> AHEAD(mark(X))
MARK(head(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
AINCR(cons(X, L)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
MARK(tail(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
anats -> aadx(azeros)
anats -> nats
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
POL(a__nats) = 0 POL(MARK(x1)) = x1 POL(adx(x1)) = x1 POL(A__NATS) = 0 POL(a__zeros) = 0 POL(A__ADX(x1)) = x1 POL(tail(x1)) = 1 + x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(A__TAIL(x1)) = x1 POL(a__adx(x1)) = x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(a__tail(x1)) = 1 + x1 POL(s(x1)) = x1 POL(head(x1)) = x1 POL(zeros) = 0 POL(a__head(x1)) = x1 POL(A__HEAD(x1)) = x1 POL(a__incr(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
ATAIL(cons(X, L)) -> MARK(L)
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
AINCR(cons(X, L)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
MARK(cons(X1, X2)) -> MARK(X1)
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
MARK(head(X)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
anats -> aadx(azeros)
anats -> nats
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
POL(a__nats) = 0 POL(MARK(x1)) = x1 POL(adx(x1)) = x1 POL(A__NATS) = 0 POL(a__zeros) = 0 POL(A__ADX(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(a__tail(x1)) = x1 POL(s(x1)) = x1 POL(head(x1)) = 1 + x1 POL(zeros) = 0 POL(a__head(x1)) = 1 + x1 POL(A__HEAD(x1)) = x1 POL(a__incr(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
MARK(cons(X1, X2)) -> MARK(X1)
AHEAD(cons(X, L)) -> MARK(X)
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
MARK(s(X)) -> MARK(X)
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
ANATS -> AADX(azeros)
azeros -> cons(0, zeros)
azeros -> zeros
anats -> aadx(azeros)
anats -> nats
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
POL(a__nats) = 1 POL(MARK(x1)) = x1 POL(adx(x1)) = x1 POL(A__NATS) = 1 POL(a__zeros) = 0 POL(A__ADX(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 1 POL(nil) = 0 POL(a__tail(x1)) = x1 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Dependency Graph
MARK(s(X)) -> MARK(X)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(cons(X1, X2)) -> MARK(X1)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Polynomial Ordering
MARK(cons(X1, X2)) -> MARK(X1)
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
anats -> aadx(azeros)
anats -> nats
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
azeros -> cons(0, zeros)
azeros -> zeros
POL(a__nats) = 1 POL(MARK(x1)) = x1 POL(adx(x1)) = 1 + x1 POL(a__zeros) = 0 POL(A__ADX(x1)) = 1 + x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(a__adx(x1)) = 1 + x1 POL(A__INCR(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 1 POL(nil) = 0 POL(a__tail(x1)) = x1 POL(s(x1)) = x1 POL(head(x1)) = x1 POL(zeros) = 0 POL(a__head(x1)) = x1 POL(a__incr(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 8
↳Remaining Obligation(s)
MARK(cons(X1, X2)) -> MARK(X1)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0