R
↳Dependency Pair Analysis
MARK(f(X)) -> AF(mark(X))
MARK(f(X)) -> MARK(X)
MARK(h(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(h(X)) -> MARK(X)
MARK(f(X)) -> MARK(X)
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
MARK(f(X)) -> MARK(X)
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
POL(MARK(x1)) = x1 POL(g(x1)) = 0 POL(h(x1)) = x1 POL(mark(x1)) = x1 POL(f(x1)) = 1 + x1 POL(a__f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
MARK(h(X)) -> MARK(X)
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
MARK(h(X)) -> MARK(X)
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
POL(MARK(x1)) = x1 POL(g(x1)) = 0 POL(h(x1)) = 1 + x1 POL(mark(x1)) = x1 POL(f(x1)) = 0 POL(a__f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))