Term Rewriting System R:
[X]
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVATE(nh(X)) -> H(activate(X))
ACTIVATE(nh(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
nh(x1) -> nh(x1)
nf(x1) -> nf(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes