R
↳Dependency Pair Analysis
ACTIVATE(nh(X)) -> H(activate(X))
ACTIVATE(nh(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
POL(n__h(x1)) = x1 POL(n__f(x1)) = 1 + x1 POL(activate(x1)) = x1 POL(g(x1)) = 0 POL(h(x1)) = x1 POL(ACTIVATE(x1)) = x1 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
ACTIVATE(nh(X)) -> ACTIVATE(X)
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
ACTIVATE(nh(X)) -> ACTIVATE(X)
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
POL(n__h(x1)) = 1 + x1 POL(n__f(x1)) = 0 POL(activate(x1)) = x1 POL(g(x1)) = 0 POL(h(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X