Term Rewriting System R:
[X]
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(X)) -> G(h(f(X)))
ACTIVE(f(X)) -> H(f(X))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(h(X)) -> H(active(X))
ACTIVE(h(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
H(mark(X)) -> H(X)
H(ok(X)) -> H(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains six SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:

G(ok(X)) -> G(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

G(ok(X)) -> G(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(G(x1))=  1 + x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
h(x1) -> h(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pairs:

H(ok(X)) -> H(X)
H(mark(X)) -> H(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

H(ok(X)) -> H(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(H(x1))=  1 + x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
H(x1) -> H(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
active(x1) -> active(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:

H(mark(X)) -> H(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

H(mark(X)) -> H(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(H(x1))=  1 + x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
H(x1) -> H(x1)
mark(x1) -> mark(x1)
active(x1) -> active(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 8
AFS
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pairs:

F(ok(X)) -> F(X)
F(mark(X)) -> F(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pairs can be strictly oriented:

F(ok(X)) -> F(X)
F(mark(X)) -> F(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(ok(x1))=  1 + x1  
  POL(F(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pairs:

ACTIVE(h(X)) -> ACTIVE(X)
ACTIVE(f(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(h(X)) -> ACTIVE(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(ACTIVE(x1))=  1 + x1  
  POL(active(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  1 + x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
h(x1) -> h(x1)
f(x1) -> f(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
g(x1) -> g(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:

ACTIVE(f(X)) -> ACTIVE(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

ACTIVE(f(X)) -> ACTIVE(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(ACTIVE(x1))=  1 + x1  
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
f(x1) -> f(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
g(x1) -> g(x1)
h(x1) -> h(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
AFS
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS


Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(f(X)) -> PROPER(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  1 + x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 13
Argument Filtering and Ordering
       →DP Problem 6
AFS


Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(h(X)) -> PROPER(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(PROPER(x1))=  1 + x1  
  POL(h(x1))=  1 + x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> f(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 13
AFS
             ...
               →DP Problem 14
Argument Filtering and Ordering
       →DP Problem 6
AFS


Dependency Pair:

PROPER(g(X)) -> PROPER(X)


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

PROPER(g(X)) -> PROPER(X)


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  1 + x1  
  POL(PROPER(x1))=  1 + x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
g(x1) -> g(x1)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 13
AFS
             ...
               →DP Problem 15
Dependency Graph
       →DP Problem 6
AFS


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(mark(X)) -> TOP(proper(X))


The following rules can be oriented:

proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(proper(x1))=  x1  
  POL(active(x1))=  1 + x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
proper(x1) -> proper(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
h(x1) -> h(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 16
Argument Filtering and Ordering


Dependency Pair:

TOP(ok(X)) -> TOP(active(X))


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





The following dependency pair can be strictly oriented:

TOP(ok(X)) -> TOP(active(X))


The following rules can be oriented:

active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(h(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  1 + x1  
  POL(f(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
f(x1) -> f(x1)
mark(x1) -> mark(x1)
g(x1) -> g(x1)
h(x1) -> h(x1)
proper(x1) -> proper(x1)
top(x1) -> top(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 16
AFS
             ...
               →DP Problem 17
Dependency Graph


Dependency Pair:


Rules:


active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes