Term Rewriting System R:
[X, Z, N, Y]
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) -> ACTIVATE(Z)
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons(X, Z)) -> ACTIVATE(Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z)
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> S(plus(X, Y))
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Nar
       →DP Problem 4
AFS


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(ns(X)) -> ACTIVATE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  x1  
  POL(n__s(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
ns(x1) -> ns(x1)
nfrom(x1) -> nfrom(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Nar
       →DP Problem 4
AFS


Dependency Pair:

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
nfrom(x1) -> nfrom(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 5
AFS
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Nar
       →DP Problem 4
AFS


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Nar
       →DP Problem 4
AFS


Dependency Pair:

PLUS(s(X), Y) -> PLUS(X, Y)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

PLUS(s(X), Y) -> PLUS(X, Y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PLUS(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 3
Nar
       →DP Problem 4
AFS


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z)))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z)))
four new Dependency Pairs are created:

2NDSPOS(s(N'), cons(X, Z)) -> 2NDSPOS(ns(N'), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z))
three new Dependency Pairs are created:

2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 9
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
four new Dependency Pairs are created:

2NDSNEG(s(N'), cons(X, Z)) -> 2NDSNEG(ns(N'), cons2(X, activate(Z)))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 10
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
three new Dependency Pairs are created:

2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 11
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons(X, nfrom(X''))) -> 2NDSPOS(s(N), cons2(X, from(activate(X''))))
six new Dependency Pairs are created:

2NDSPOS(s(N'), cons(X, nfrom(X''))) -> 2NDSPOS(ns(N'), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, nfrom(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 12
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons(X, ns(X''))) -> 2NDSPOS(s(N), cons2(X, s(activate(X''))))
five new Dependency Pairs are created:

2NDSPOS(s(N'), cons(X, ns(X''))) -> 2NDSPOS(ns(N'), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, ns(activate(X'''))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 13
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSNEG(N, from(activate(X'')))
five new Dependency Pairs are created:

2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, nfrom(activate(X''')))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 14
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSPOS(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSNEG(N, s(activate(X'')))
four new Dependency Pairs are created:

2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, ns(activate(X''')))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 15
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons(X, nfrom(X''))) -> 2NDSNEG(s(N), cons2(X, from(activate(X''))))
six new Dependency Pairs are created:

2NDSNEG(s(N'), cons(X, nfrom(X''))) -> 2NDSNEG(ns(N'), cons2(X, from(activate(X''))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, nfrom(activate(X'''))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 16
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons(X, ns(X''))) -> 2NDSNEG(s(N), cons2(X, s(activate(X''))))
five new Dependency Pairs are created:

2NDSNEG(s(N'), cons(X, ns(X''))) -> 2NDSNEG(ns(N'), cons2(X, s(activate(X''))))
2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, ns(activate(X'''))))
2NDSNEG(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, s(from(activate(X''')))))
2NDSNEG(s(N), cons(X, ns(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, s(s(activate(X''')))))
2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, s(X''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 17
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, s(X''')))
2NDSNEG(s(N), cons(X, ns(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, s(s(activate(X''')))))
2NDSNEG(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, s(from(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X'')))) -> 2NDSPOS(N, from(activate(X'')))
five new Dependency Pairs are created:

2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, nfrom(activate(X''')))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 18
Narrowing Transformation
       →DP Problem 4
AFS


Dependency Pairs:

2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, s(X''')))
2NDSNEG(s(N), cons(X, ns(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSNEG(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

2NDSNEG(s(N), cons2(X, cons(Y, ns(X'')))) -> 2NDSPOS(N, s(activate(X'')))
four new Dependency Pairs are created:

2NDSNEG(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSPOS(N, ns(activate(X''')))
2NDSNEG(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 19
Argument Filtering and Ordering
       →DP Problem 4
AFS


Dependency Pairs:

2NDSNEG(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))
2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, s(X''')))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))
2NDSNEG(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons(X, ns(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pairs can be strictly oriented:

2NDSNEG(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSPOS(N, s(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, ns(X''')))) -> 2NDSNEG(N, s(X'''))
2NDSNEG(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSPOS(N, s(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(ns(X'''))))) -> 2NDSNEG(N, s(s(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSPOS(N, s(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, ns(nfrom(X'''))))) -> 2NDSNEG(N, s(from(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, from(X'''))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, from(X'''))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSPOS(N, from(s(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSNEG(N, from(from(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(nfrom(X'''))))) -> 2NDSPOS(N, from(from(activate(X'''))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(ns(X'''))))) -> 2NDSNEG(N, from(s(activate(X'''))))
2NDSNEG(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSPOS(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSPOS(s(N), cons2(X, cons(Y, nfrom(X''')))) -> 2NDSNEG(N, cons(activate(X'''), nfrom(ns(activate(X''')))))
2NDSNEG(s(N), cons2(X, cons(Y, Z'))) -> 2NDSPOS(N, Z')
2NDSPOS(s(N), cons2(X, cons(Y, Z'))) -> 2NDSNEG(N, Z')


The following usable rules using the Ce-refinement can be oriented:

s(X) -> ns(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from)=  0  
  POL(from)=  0  
  POL(activate(x1))=  x1  
  POL(2NDSNEG(x1, x2))=  x1 + x2  
  POL(n__s(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  
  POL(2NDSPOS(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
2NDSPOS(x1, x2) -> 2NDSPOS(x1, x2)
2NDSNEG(x1, x2) -> 2NDSNEG(x1, x2)
s(x1) -> s(x1)
cons2(x1, x2) -> x2
cons(x1, x2) -> x2
ns(x1) -> ns(x1)
from(x1) -> from
nfrom(x1) -> nfrom
activate(x1) -> activate(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 20
Dependency Graph
       →DP Problem 4
AFS


Dependency Pairs:

2NDSNEG(s(N), cons(X, ns(X'''))) -> 2NDSNEG(s(N), cons2(X, s(X''')))
2NDSPOS(s(N), cons(X, ns(X'''))) -> 2NDSPOS(s(N), cons2(X, s(X''')))
2NDSNEG(s(N), cons(X, ns(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, s(s(activate(X''')))))
2NDSPOS(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, s(from(activate(X''')))))
2NDSNEG(s(N), cons(X, ns(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, s(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, from(X''')))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, from(X''')))
2NDSPOS(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, from(s(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(ns(X''')))) -> 2NDSNEG(s(N), cons2(X, from(s(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSPOS(s(N), cons2(X, from(from(activate(X''')))))
2NDSNEG(s(N), cons(X, nfrom(nfrom(X''')))) -> 2NDSNEG(s(N), cons2(X, from(from(activate(X''')))))
2NDSPOS(s(N), cons(X, nfrom(X'''))) -> 2NDSPOS(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSNEG(s(N), cons(X, nfrom(X'''))) -> 2NDSNEG(s(N), cons2(X, cons(activate(X'''), nfrom(ns(activate(X'''))))))
2NDSPOS(s(N), cons(X, Z')) -> 2NDSPOS(s(N), cons2(X, Z'))
2NDSNEG(s(N), cons(X, Z')) -> 2NDSNEG(s(N), cons2(X, Z'))
2NDSPOS(s(N), cons(X, ns(ns(X''')))) -> 2NDSPOS(s(N), cons2(X, s(s(activate(X''')))))


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
       →DP Problem 4
Argument Filtering and Ordering


Dependency Pair:

TIMES(s(X), Y) -> TIMES(X, Y)


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following dependency pair can be strictly oriented:

TIMES(s(X), Y) -> TIMES(X, Y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TIMES(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
TIMES(x1, x2) -> TIMES(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
       →DP Problem 4
AFS
           →DP Problem 21
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:58 minutes