Term Rewriting System R:
[X, Y, M, N, X1, X2, X3]
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(filter(cons(X, Y), 0, M)) -> CONS(0, filter(Y, M, M))
ACTIVE(filter(cons(X, Y), 0, M)) -> FILTER(Y, M, M)
ACTIVE(filter(cons(X, Y), s(N), M)) -> CONS(X, filter(Y, N, M))
ACTIVE(filter(cons(X, Y), s(N), M)) -> FILTER(Y, N, M)
ACTIVE(sieve(cons(0, Y))) -> CONS(0, sieve(Y))
ACTIVE(sieve(cons(0, Y))) -> SIEVE(Y)
ACTIVE(sieve(cons(s(N), Y))) -> CONS(s(N), sieve(filter(Y, N, N)))
ACTIVE(sieve(cons(s(N), Y))) -> SIEVE(filter(Y, N, N))
ACTIVE(sieve(cons(s(N), Y))) -> FILTER(Y, N, N)
ACTIVE(nats(N)) -> CONS(N, nats(s(N)))
ACTIVE(nats(N)) -> NATS(s(N))
ACTIVE(nats(N)) -> S(N)
ACTIVE(zprimes) -> SIEVE(nats(s(s(0))))
ACTIVE(zprimes) -> NATS(s(s(0)))
ACTIVE(zprimes) -> S(s(0))
ACTIVE(zprimes) -> S(0)
ACTIVE(filter(X1, X2, X3)) -> FILTER(active(X1), X2, X3)
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) -> FILTER(X1, active(X2), X3)
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) -> FILTER(X1, X2, active(X3))
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X3)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(sieve(X)) -> SIEVE(active(X))
ACTIVE(sieve(X)) -> ACTIVE(X)
ACTIVE(nats(X)) -> NATS(active(X))
ACTIVE(nats(X)) -> ACTIVE(X)
FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) -> FILTER(X1, X2, X3)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
SIEVE(mark(X)) -> SIEVE(X)
SIEVE(ok(X)) -> SIEVE(X)
NATS(mark(X)) -> NATS(X)
NATS(ok(X)) -> NATS(X)
PROPER(filter(X1, X2, X3)) -> FILTER(proper(X1), proper(X2), proper(X3))
PROPER(filter(X1, X2, X3)) -> PROPER(X1)
PROPER(filter(X1, X2, X3)) -> PROPER(X2)
PROPER(filter(X1, X2, X3)) -> PROPER(X3)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(sieve(X)) -> SIEVE(proper(X))
PROPER(sieve(X)) -> PROPER(X)
PROPER(nats(X)) -> NATS(proper(X))
PROPER(nats(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains eight SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
FILTER(ok(X1), ok(X2), ok(X3)) -> FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3)
FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- FILTER(ok(X1), ok(X2), ok(X3)) -> FILTER(X1, X2, X3)
- FILTER(X1, X2, mark(X3)) -> FILTER(X1, X2, X3)
- FILTER(X1, mark(X2), X3) -> FILTER(X1, X2, X3)
- FILTER(mark(X1), X2, X3) -> FILTER(X1, X2, X3)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | = | 1 |
2 | = | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
3 | = | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
3 | = | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | = | 1 |
2 | = | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | > | 3 |
|
{4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | = | 3 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
- CONS(mark(X1), X2) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
SIEVE(ok(X)) -> SIEVE(X)
SIEVE(mark(X)) -> SIEVE(X)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- SIEVE(ok(X)) -> SIEVE(X)
- SIEVE(mark(X)) -> SIEVE(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
NATS(ok(X)) -> NATS(X)
NATS(mark(X)) -> NATS(X)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- NATS(ok(X)) -> NATS(X)
- NATS(mark(X)) -> NATS(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
- S(mark(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
Dependency Pairs:
ACTIVE(nats(X)) -> ACTIVE(X)
ACTIVE(sieve(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X3)
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X1)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(nats(X)) -> ACTIVE(X)
- ACTIVE(sieve(X)) -> ACTIVE(X)
- ACTIVE(s(X)) -> ACTIVE(X)
- ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
- ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X3)
- ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X2)
- ACTIVE(filter(X1, X2, X3)) -> ACTIVE(X1)
and get the following Size-Change Graph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
filter(x1, x2, x3) -> filter(x1, x2, x3)
sieve(x1) -> sieve(x1)
cons(x1, x2) -> cons(x1, x2)
nats(x1) -> nats(x1)
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳AFS
Dependency Pairs:
PROPER(nats(X)) -> PROPER(X)
PROPER(sieve(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(filter(X1, X2, X3)) -> PROPER(X3)
PROPER(filter(X1, X2, X3)) -> PROPER(X2)
PROPER(filter(X1, X2, X3)) -> PROPER(X1)
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(nats(X)) -> PROPER(X)
- PROPER(sieve(X)) -> PROPER(X)
- PROPER(s(X)) -> PROPER(X)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(filter(X1, X2, X3)) -> PROPER(X3)
- PROPER(filter(X1, X2, X3)) -> PROPER(X2)
- PROPER(filter(X1, X2, X3)) -> PROPER(X1)
and get the following Size-Change Graph(s): {8, 7, 6, 5, 4, 3, 2, 1} | , | {8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {8, 7, 6, 5, 4, 3, 2, 1} | , | {8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
filter(x1, x2, x3) -> filter(x1, x2, x3)
sieve(x1) -> sieve(x1)
cons(x1, x2) -> cons(x1, x2)
nats(x1) -> nats(x1)
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Argument Filtering and Ordering
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The following dependency pair can be strictly oriented:
TOP(mark(X)) -> TOP(proper(X))
The following usable rules w.r.t. the AFS can be oriented:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
Used ordering: Lexicographic Path Order with Precedence:
filter > mark
zprimes > 0
zprimes > sieve > mark
zprimes > nats > mark
resulting in one new DP problem.
Used Argument Filtering System: TOP(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
cons(x1, x2) -> x1
sieve(x1) -> sieve(x1)
mark(x1) -> mark(x1)
filter(x1, x2, x3) -> filter(x1, x2, x3)
s(x1) -> x1
nats(x1) -> nats(x1)
proper(x1) -> x1
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
→DP Problem 9
↳Negative Polynomial Order
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The following Dependency Pair can be strictly oriented using the given order.
TOP(ok(X)) -> TOP(active(X))
Moreover, the following usable rules (regarding the implicit AFS) are oriented.
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
Used ordering:
Polynomial Order with Interpretation:
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1 + 1
POL( active(x1) ) = x1
POL( filter(x1, ..., x3) ) = x3
POL( mark(x1) ) = 0
POL( cons(x1, x2) ) = x2
POL( s(x1) ) = x1
POL( sieve(x1) ) = x1
POL( nats(x1) ) = x1
This results in one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳AFS
→DP Problem 9
↳Neg POLO
...
→DP Problem 10
↳Dependency Graph
Dependency Pair:
Rules:
active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) -> mark(cons(N, nats(s(N))))
active(zprimes) -> mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(sieve(X)) -> sieve(active(X))
active(nats(X)) -> nats(active(X))
filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3))
filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sieve(mark(X)) -> mark(sieve(X))
sieve(ok(X)) -> ok(sieve(X))
nats(mark(X)) -> mark(nats(X))
nats(ok(X)) -> ok(nats(X))
proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(sieve(X)) -> sieve(proper(X))
proper(nats(X)) -> nats(proper(X))
proper(zprimes) -> ok(zprimes)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration:
0:10 minutes