Term Rewriting System R:
[X, XS, N, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

2ND(cons(X, XS)) -> HEAD(activate(XS))
2ND(cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Nar


Dependency Pairs:

TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pairs can be strictly oriented:

TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
TAKE(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
ACTIVATE(x1) -> x1
ntake(x1, x2) -> ntake(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
three new Dependency Pairs are created:

SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
two new Dependency Pairs are created:

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, nfrom(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 5
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
three new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(0, X2''))) -> SEL(N, nil)
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, ntake(X1'', X2''))) -> SEL(N, ntake(X1'', X2''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 6
Argument Filtering and Ordering


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pairs can be strictly oriented:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
ntake(x1, x2) -> x1
nfrom(x1) -> nfrom


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 7
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes