Term Rewriting System R:
[X, XS, N, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

2ND(cons(X, XS)) -> HEAD(activate(XS))
2ND(cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pairs:

TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(activate(x1))=  x1  
  POL(n__take(x1, x2))=  1 + x2  
  POL(take(x1, x2))=  1 + x2  
  POL(TAKE(x1, x2))=  x2  
  POL(sel(x1, x2))=  1 + x2  
  POL(ACTIVATE(x1))=  x1  
  POL(n__from(x1))=  x1  
  POL(0)=  0  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  0  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:

TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
three new Dependency Pairs are created:

SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
two new Dependency Pairs are created:

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, nfrom(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 5
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
three new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(0, X2''))) -> SEL(N, nil)
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, ntake(X1'', X2''))) -> SEL(N, ntake(X1'', X2''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 6
Polynomial Ordering


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

SEL(s(N), cons(X, XS')) -> SEL(N, XS')


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(activate(x1))=  1 + x1  
  POL(n__take(x1, x2))=  x2  
  POL(SEL(x1, x2))=  1 + x2  
  POL(take(x1, x2))=  1 + x2  
  POL(sel(x1, x2))=  1 + x2  
  POL(n__from(x1))=  x1  
  POL(0)=  0  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  0  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 7
Dependency Graph


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 8
Narrowing Transformation


Dependency Pair:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
three new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 10
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))
two new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', nfrom(X''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 12
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
three new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(0, X2''))))) -> SEL(N, cons(X'', ntake(N'', nil)))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1'', X2''))))) -> SEL(N, cons(X'', ntake(N'', ntake(X1'', X2''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 14
Polynomial Ordering


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(activate(x1))=  1 + x1  
  POL(n__take(x1, x2))=  x2  
  POL(SEL(x1, x2))=  1 + x2  
  POL(take(x1, x2))=  1 + x2  
  POL(sel(x1, x2))=  1 + x2  
  POL(n__from(x1))=  x1  
  POL(0)=  0  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  0  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 16
Dependency Graph


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 17
Narrowing Transformation


Dependency Pair:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
three new Dependency Pairs are created:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', nfrom(X'0))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', from(X'0))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', ntake(X1', X2'))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', take(X1', X2'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 19
Polynomial Ordering


Dependency Pairs:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', ntake(X1', X2'))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', take(X1', X2'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', nfrom(X'0))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', from(X'0))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





The following dependency pair can be strictly oriented:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))


Additionally, the following rules can be oriented:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(activate(x1))=  1 + x1  
  POL(n__take(x1, x2))=  x2  
  POL(SEL(x1, x2))=  1 + x2  
  POL(take(x1, x2))=  1 + x2  
  POL(sel(x1, x2))=  1 + x2  
  POL(n__from(x1))=  x1  
  POL(0)=  0  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  0  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 20
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 18
Instantiation Transformation


Dependency Pair:

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
one new Dependency Pair is created:

SEL(s(N0), cons(X', ntake(s(N''''), cons(X''0, nfrom(s(X''''''')))))) -> SEL(N0, cons(X''0, ntake(N'''', cons(s(X'''''''), nfrom(s(s(X''''''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 20
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 9
Instantiation Transformation


Dependency Pair:

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
one new Dependency Pair is created:

SEL(s(N''), cons(X', nfrom(s(X'''''')))) -> SEL(N'', cons(s(X''''''), nfrom(s(s(X'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 11
Instantiation Transformation


Dependency Pair:

SEL(s(N''), cons(X', nfrom(s(X'''''')))) -> SEL(N'', cons(s(X''''''), nfrom(s(s(X'''''')))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N''), cons(X', nfrom(s(X'''''')))) -> SEL(N'', cons(s(X''''''), nfrom(s(s(X'''''')))))
one new Dependency Pair is created:

SEL(s(N''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(N'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 13
Instantiation Transformation


Dependency Pair:

SEL(s(N''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(N'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N''''), cons(s(X'''''''0), nfrom(s(s(X'''''''''))))) -> SEL(N'''', cons(s(s(X''''''''')), nfrom(s(s(s(X'''''''''))))))
one new Dependency Pair is created:

SEL(s(N''''''), cons(s(s(X'''''''''''')), nfrom(s(s(s(X''''''''''''')))))) -> SEL(N'''''', cons(s(s(s(X'''''''''''''))), nfrom(s(s(s(s(X''''''''''''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 20
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:01 minutes