Term Rewriting System R:
[X, Y, Z, X1, X2]
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Negative Polynomial Order


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following Dependency Pair can be strictly oriented using the given order.

ACTIVATE(nfrom(X)) -> ACTIVATE(X)


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering:
Polynomial Order with Interpretation:

POL( ACTIVATE(x1) ) = x1

POL( nfrom(x1) ) = x1 + 1

POL( nfirst(x1, x2) ) = x1 + x2

POL( FIRST(x1, x2) ) = x2

POL( activate(x1) ) = x1

POL( ns(x1) ) = x1

POL( cons(x1, x2) ) = x2

POL( first(x1, x2) ) = x1 + x2

POL( from(x1) ) = x1 + 1

POL( s(x1) ) = x1

POL( 0 ) = 0

POL( nil ) = 0


This results in one new DP problem.


   R
DPs
       →DP Problem 1
Neg POLO
           →DP Problem 2
Negative Polynomial Order


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following Dependency Pair can be strictly oriented using the given order.

ACTIVATE(ns(X)) -> ACTIVATE(X)


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering:
Polynomial Order with Interpretation:

POL( ACTIVATE(x1) ) = x1

POL( ns(x1) ) = x1 + 1

POL( nfirst(x1, x2) ) = x1 + x2

POL( FIRST(x1, x2) ) = x2

POL( activate(x1) ) = x1

POL( cons(x1, x2) ) = x2

POL( first(x1, x2) ) = x1 + x2

POL( nfrom(x1) ) = 0

POL( from(x1) ) = 0

POL( s(x1) ) = x1 + 1

POL( 0 ) = 0

POL( nil ) = 0


This results in one new DP problem.


   R
DPs
       →DP Problem 1
Neg POLO
           →DP Problem 2
Neg POLO
             ...
               →DP Problem 3
Negative Polynomial Order


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





The following Dependency Pairs can be strictly oriented using the given order.

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)


Used ordering:
Polynomial Order with Interpretation:

POL( ACTIVATE(x1) ) = x1

POL( nfirst(x1, x2) ) = x1 + x2 + 1

POL( FIRST(x1, x2) ) = x2

POL( activate(x1) ) = x1

POL( cons(x1, x2) ) = x2

POL( first(x1, x2) ) = x1 + x2 + 1

POL( nfrom(x1) ) = 0

POL( from(x1) ) = 0

POL( ns(x1) ) = x1

POL( s(x1) ) = x1

POL( 0 ) = 0

POL( nil ) = 0


This results in one new DP problem.


   R
DPs
       →DP Problem 1
Neg POLO
           →DP Problem 2
Neg POLO
             ...
               →DP Problem 4
Dependency Graph


Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes